

PO Box 11867 | 227 Blatt Building Columbia SC 29211 | WWW.SCEOC.ORG

REVISED AGENDA

Joint Academic Standards & Assessments and Public Awareness Subcommittee Meeting

Monday, September 18, 2023 10:00 a.m. Room 521, Blatt Building

I.	Welcome	Dr. Patti Tate
II.	Approval of Joint ASA\PA Subcommitt for May 15, 2023	ee Minutes Dr. Patti Tate
III.	<u>Action Items:</u> Process for Approval Dual Enrollmen and Industry Certifications/Credentia	nt IlsDana Yow
	2023 SC College-and Career-Ready Mathematics Standards	, Dr. Rainey Knight Director of Strategic Innovation
	SCDE Mathematics Standards Pres	entationSandra Ammons Team Lead & Math Support SC Department of Education
IV.	For Information: Cut Score Calibration of College Rea	adiness ExamsDr. Matthew Lavery Deputy Director
V.	Adjournment	
Di Re Ba Si	cademic Standards and Assessments r. Patti Tate, Chair ep. Bill Hager arbara Hairfield dney Locke en. Dwight Loftis	<u>Public Awareness</u> Barbara Hairfield, Chair Rep. Terry Alexander

Neal Collins Bob Couch Bill Hager Barbara B. Hairfield Kevin L. Johnson Sidney Locke Dwight Loftis Neil C. Robinson, Jr. Patti J. Tate C. Ross Turner, III Ellen Weaver

April Allen CHAIR

Brian Newsome VICE CHAIR Terry Alexander Melanie Barton Russell Booker

Dana Yow EXECUTIVE DIRECTOR

Neil Robinson

Sen. Ross Turner

SOUTH CAROLINA EDUCATION OVERSIGHT COMMITTEE

Joint Academic Standards & Assessments and Public Awareness Subcommittee

Minutes of the Meeting

May 15, 2023

<u>Members Present (in-person or remote)</u>: Rep. Bill Hager, Barbara Hairfield, Sen. Ross Turner, and Rep. Terry Alexander

<u>EOC Staff Present:</u> Gabrielle Fulton, Riley Dixon, Dr. Jenny May, Dr. Matthew Lavery, Dr. Rainey Knight, Hope Johnson-Jones, and Dana Yow

Guest(s) Present: Dr. Christine DiStefano, University of SC

Ms. Hairfield welcomed members and sent her regards from Dr. Tate, Academic Standards & Assessments Chair, who was unable to attend due to classroom duties. As the first order of business, members moved to approve the minutes from the prior meeting held on March 20, 2023. The minutes were approved unanimously.

Next, Ms. Hairfield introduced Dr. DiStefano, from the University of South Carolina, for a review of the U.S. History & Constitution End-of-Course Evaluation (USHC EOC). Dr. DiStefano noted that the evaluation was conducted using test data from Spring, 2022, with the goal of ensuring that the USHC EOC provides reliable data for evaluation and accountability.

Ms. Hairfield asked if this evaluation was conducted through a comparison to the former USHC EOC. Dr. DiStefano clarified that it was not and that the new test used some items from the previous test, realigned to the new standards, alongside new items. Dr. DiStefano noted that the review was conducted according to the areas outlined in the US Department of Education's peer review guidelines and provided several sources, which can be found in detail in the meeting materials and in the full evaluation available on the EOC website. With the recommendation that the USHC EOC is overall appropriate, Dr. DiStefano opened the floor for questions and comments. Ms. Hairfield noted that the action item is to approve the report and proposed a delay until SC Department of Education can be in attendance. Rep. Alexander agreed and the motion was not taken.

Next, Ms. Hairfield introduced Dr. Jenny May for a review of the Report on the Educational Credit for Exceptional Needs Children (ECENC) Program. Dr. May introduced the report, noting its requirement pursuant to Act 247 and its goal to provide information on approval, participation, and compliance for invested stakeholders. The full report and list of recommendations can be found on the EOC website. Dr. May noted that while the EOC writes the evaluation and is responsible for approving schools, Exceptional SC is responsible for the financial allocations. Ms. Hairfield asked if there is a requirement for schools receiving funds to administer a common assessment, which Dr. May confirmed is not the case. Sen. Ross Turner moved to approve the report, with Rep. Alexander seconding the motion. With no opposition, the report was moved to the full EOC.

Ms. Hairfield then introduced Interim Executive Director Dana Yow for a presentation on the 2023 Report on the Educational Performance of Military-Connected Students in SC. Ms. Yow thanked the Subcommittee and noted that the report was prepared by Dr. Amber Adgerson, who has left EOC staff for a position at the University of North Dakota and thanked Mr. Dixon for his help in finalizing the report. Ms. Yow noted that the report stems from a requirement of Act 289, passed in 2014. Ms. Yow highlighted the trouble in accessing quality data on military connected students due to the challenges associated with a lack of standardized data collection and coding of military-connected students. While military-connected students tend to do well academically, they also have substantial needs that cannot be met when students are not identified. Ms. Hairfield moved to approve the report and with the motion seconded, it moved to full committee.

Ms. Hairfield introduced Dr. Lavery to provide information on modified in-year reporting for High School achievement tests. Dr. Lavery explained that while many options were considered, the Report Card will use all EOCEP exams from the current year for student enrollment in high school for testing and all EOCEP exams from any students currently enrolled at the school which have not yet been reported for accountability. Dr. Lavery noted that this provides more relevant information to high school leaders.

Ms. Hairfield noted that the EOC Full Committee Retreat in August has been moved to the South Carolina Ports Authority. With no questions, the meeting adjourned.

EDUCATION OVERSIGHT COMMITTEE

DATE: September 18, 2023

COMMITTEE:

Joint Academic Standards & Assessments and Public Awareness Subcommittees

ACTION ITEM:

Process for approval of Dual Enrollment and Industry Certifications and Credentials

PURPOSE/AUTHORITY

Section 59-18-900 of the Education Accountability Act (EAA) as amended by Act 94 of 2017 requires the EOC to "determine the criteria for and establish performance ratings of excellent, good, average, below average, and unsatisfactory for schools." Furthermore, "the same categories of performance ratings also must be assigned to individual indicators used to measure a school's performance including, but not limited to, academic achievement, student growth or progress, graduation rate, English language proficiency, and college and career readiness." The EAA also encourages students to earn industry credentials to be career ready. In addition, the state longitudinal data system created by Section 59-18-1950 requires the Revenue and Fiscal Affairs Office to measure the continuous improvement of the state public education system and the college and career readiness and success of its graduates by documenting "working-aged adults in South Carolina by county who possess a postsecondary degree or industry credential."

CRITICAL FACTS

Per the SC accountability system, high schools receive an indicator rating for College/Career Readiness, which is the percentage of high school graduates who are college or career ready. In addition, one-fourth or 25 points of each high school's overall rating is based on this indicator. While there are several metrics that can define both "college ready" and "career ready," a student may be deemed "career ready" if the high school graduate is a Career and Technical Education (CTE) completer and, where applicable, has earned a national industry credential (or state if national not available) as determined by the business community. After the business community vets the certifications, the EOC approves those certifications that count toward "career ready" for purposes of accountability. EOC staff is proposing a process for vetting and approving new certifications and credentials for the 2023-24 school year – in advance of the adoption of the tiered credential system.

Students completing at least six credit hours in an approved dual enrollment course with a grade of C or higher are considered "college ready" in the current accountability system. Approved courses should be in English, mathematics, STEM, or social studies. EOC staff is proposing a process be initiated to further refine list of approved courses to include only those courses that meet the associate of science or associate of arts that transfer to a four-year degree, Bachelor of Science, or Bachelor of Arts degree and those that have been approved by CHE's Office of Academic Affairs.

TIMELINE/REVIEW PROCESS

Timelines outlined within process documents.

ECONOMIC IMPACT FOR EOC

none

ACTION REQUEST

For approval

For information

ACTION TAKEN

Approved Not Approved Amended
 Action deferred (explain)

Action Item	Person Responsible	Deadline ¹
SCDE submits course(s) to	Director, SCDE Standards and	August 1
EOC for consideration for	Assessment Office	
approval		
EOC reviews list and submits	Executive Director, EOC	August 15
to Office of Academic Affairs		
at SC Commission on Higher		
Education (CHE)		
CHE conducts review of	Director, CHE Office	September 15
courses submitted against	Academic Affairs	
college credit criteria ² and		
confirms courses meet		
criteria; submits list to EOC		
EOC submits revisions/final	Executive Director, EOC	October 1
list to SCDE		

Process for Dual Enrollment Course Approval for SC Report Card

Note 1: The deadline is for the approval of dual credit courses for the school year in which this process is initiated. The dual credit course approval is not retroactive.

EOC staff review of courses includes inclusion of courses that meet the associate of science or associate of arts that transfer to a four-year degree, Bachelor of Science, or Bachelor of Arts degree.

Note 2: In December 2017, the EOC approved the criteria by which dual enrollment courses are approved as College-Ready as defined in the accountability system. Prior to December 2017, the EOC had approved the following criteria for dual enrollment course inclusion in CCR:

Students completing at least six (6) credit hours in dual enrollment courses in an English or mathematics course or STEM course with a grade of C or higher. STEM is defined as a natural/lab science or computer science course. The SCDE recommended that social studies courses be included in the criteria, and the recommendation was approved in December 2017.

Process for Approval of Industry Certifications/Credentials for Inclusion in College and Career-Ready Indicator on SC Report Card School Year 2023-24

Per the SC accountability system, high schools receive an indicator rating for College/Career Readiness, which is the percentage of students in the 9GR who are college- or career-ready. While there are several metrics that can define "career ready," a student may be deemed "career-ready" if the high school graduate is a Career and Technical Education (CTE) completer and, where applicable, has earned a national industry credential (or state if national not available) as determined by the business community.

Following vetting by groups at the SC Chamber of Commerce and the EEDA Coordinating Council, the EOC approved certifications/credentials on the following schedule:

School Year	New Certifications Approved
2017-18	130
2018-19	34
2019-20	80 (approved by EOC April 2019)

No approval of new certifications has occurred for School Years 2020-21, 2021-22, or 2022-23. The combined impact of COVID and the sunset of the EEDA Coordinating Council was an impediment to the process of industry vetting.

The SCDE has submitted a list of 75 certifications/credentials to be submitted for the current school year. EOC staff recommends the process outlined in the table below be used to consider these new certifications.

The EOC is expected to receive the proposed Stackable Credentials system for consideration in February 2024. At that time, the process by which credentials and certifications are vetted prior to EOC receipt is likely to change.

Action Item	Person Responsible	Deadline
SCDE submits certification(s)	Director, SCDE Career and	August 1, 2023
to EOC for consideration for	Technology Education (CTE)	
approval	Office	
EOC reviews list and submits	Executive Director, EOC	August 15, 2023
to SC Future Makers and SC		
Competes for industry		
personnel review by cluster		
SC Future Makers, working	Executive Director, SC Future	September 15, 2023
with outside industry groups,	Makers	
conducts review of		
certifications submitted using		
designated Tiers proposed by		
SREB in Stackable Credential		
system (see note 1); submits		

list to EOC staff for additional		
review		
EOC submits	Executive Director, EOC	November 13, 2023
recommendations to ASA/PA		
Subcommittee for approval		
Subcommittee	Executive Director, EOC	December 11, 2023
recommendations to full EOC		
for approval; final approved		
list sent to SCDE offices		

Note 1. SC's Proposed Tiering Language (expected to be considered by EOC in February 2024)

South Carolina's Proposed Tiering Language

Tier 1—Introductory

1. The credential measures basic skills.

2. The credential is recognized by local/regional industries.

 The credential can be obtained in the early stages (first or second course) of a program of study.

Tier 2—Intermediate

1. The credential is aligned with industry-recognized standards.

- 2. The credential is endorsed by a national industry or trade association or a major employer in the state.
- The credential holder is given job consideration.
- The credential leads to improved social outcomes such as improved health and wellbeing.

Tier 3—Career Ready

- 1. There is transparent evidence the competencies held by the credential holder align with the
- anticipated job opportunities. 2. The credential is required for employment or advanced training.
- 3. The outcomes for credential holders are wage gains, promotion, or retention supporting a family-sustaining wage for South Carolina.
- 4.The credential leads to additional education and
- training. (Stackable) 5. The credential is granted to those that complete a training
- program and related assessments are administered by a third party with no connection to the test-taker.

connection to the test-taker

EDUCATION OVERSIGHT COMMITTEE

DATE: September 18, 2023

COMMITTEE:

Joint Academic Standards & Assessments and Public Awareness Subcommittees

ACTION ITEM:

Approval of SC College- and Career-Ready Mathematics Standards

PURPOSE/AUTHORITY

SECTION 59-18-350. Cyclical review of state standards and assessments; analysis of assessment results. (A) The State Board of Education, in consultation with the Education Oversight Committee, shall provide for a cyclical review by academic area of the state standards and assessments to ensure that the standards and assessments are maintaining high expectations for learning and teaching. At a minimum, each academic area should be reviewed and updated every seven years. After each academic area is reviewed, a report on the recommended revisions must be presented to the Education Oversight Committee and the State Board of Education for consideration. The previous content standards shall remain in effect until the recommended revisions are adopted pursuant to Section 59-18-355. As a part of the review, a task force of parents, business and industry persons, community leaders, and educators, to include special education teachers, shall examine the standards and assessment system to determine rigor and relevancy.

CRITICAL FACTS

The South Carolina Department of Education (SCDE) has completed revisions to SC College- and Career-Ready Mathematics Standards. Attached are the SC 2021 South Carolina College and Career Ready Mathematics Standards as revised by the SCDE. These revisions were completed using recommendations which were compiled under the advisement of two review panels convened by the EOC: a national review panel of mathematics educators who have worked with national or other state organizations and a state review panel made up of South Carolina mathematics teachers, parents, business and community leaders and South Carolina teachers of English language learners and exceptional education drawn from various geographic areas in South Carolina.

TIMELINE/REVIEW PROCESS

April-June 2021	EOC conducts state and national review of current SC College- and	
	Career-Ready Math Standards	
December 2021	EOC adopts revisions to Mathematics Standards	
2022-2023	SCDE Writing Teams consider recommendations made by the EOC,	
	review panels, and Vertical Alignment Team; complete revision for pubic review	
September 12, 2023	SC State Board of Education to consider standards for 1 st reading	
September 18, 2023	EOC ASA/PA Subcommittees to consider standards for approval	

ECONOMIC IMPACT FOR EOC

none

ACTION REQUEST

For approval

For information

ACTION TAKEN

Approved
Not Approved

Amended
 Action deferred (explain)

ELLEN E. WEAVER STATE SUPERINTENDENT OF EDUCATION

South Carolina College- and Career-Ready Mathematics Standards

Pursuant to the South Carolina Educational Accountability Act of 1998 (S.C. Code Ann. § 59-18-110)

> Presented to the State Board of Education First Read: September, 2023

The South Carolina Department of Education does not discriminate on the basis of race, color, religion, national origin, sex, sexual orientation, veteran status, or disability in admission to, treatment in, or employment in its programs and activities. Inquiries regarding the nondiscrimination policies should be made to the Employee Relations Manager, 1429 Senate Street, Columbia, South Carolina 29201, 803-734-8781. For further information on federal non-discrimination regulations, including Title IX, contact the Assistant Secretary for Civil Rights at OCR.DC@ed.gov or call 1-800-421-3481.

Contents	Contents	2
	nents	
e	i's Standards Revision Process	
	This Document	
	ument Organization	
e	S	
2	College- and Career-Ready Mathematics Standards K-12 Overview	
	thematical Process Standards	
	nts	
	o the Profile of the South Carolina Graduate	
	Math Standards	
-	ath Standards	
	Math Standards	
	ath Standards	
	Math Standards	
	ath Standards	
	ath Standards	
	Math Standards	
	hth Grade Compacted Math Standards	
	Math Standards	
	& Geometry Compacted Math Standards	
-	Statistics Standards	
-	dards	
-	Probability Standards	
Pre-Calculus S	tandards	150
Calculus Stand	lards	161
Reasoning in N	Mathematics Standards	169
Applications an	nd Modeling Standards	177
Statistical Mod	leling Standards	187
Discrete Mathe	ematics Standards	197
Appendix A: H	Iigh School Course Pathways Graphic	205
Appendix B: A	cknowledgements	206
References		208
SC CCR Math	<i>Standards</i> Pa	ge 2

Contents

Acknowledgements

South Carolina owes a debt of gratitude to those who collaborated to produce the 2023 South Carolina College- and Career-Ready Mathematics Standards (SC CCR Math Standards). For a full list of names of the writing committee, see Appendix B.

Mathematics Standards Review Panel 2021

The review panel recommended revisions to the 2015 South Carolina College- and Career-Ready Standards for Mathematics.

Standards Writing Committee 2022-2023

The members of the writing committee considered recommendations by the review panel, the Education Oversite Committee, and the vertical alignment team to develop the draft of the revised standards.

Vertical Alignment Team 2023

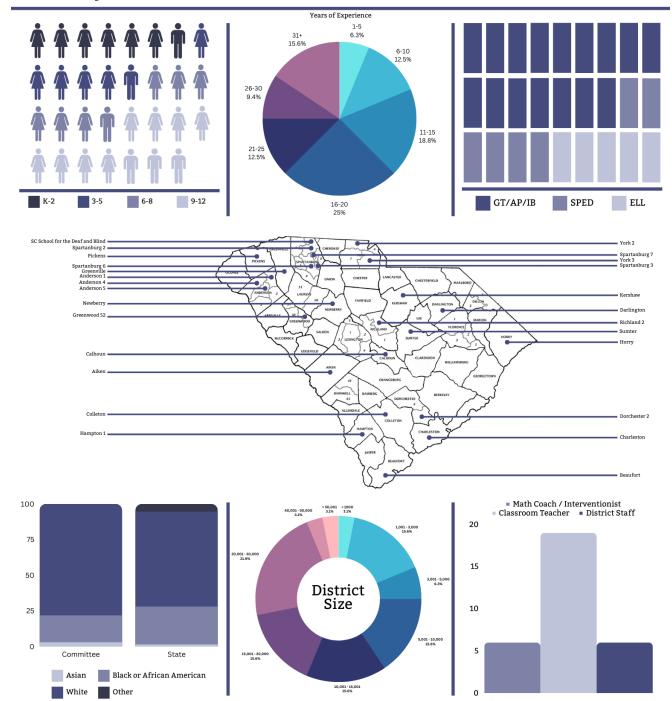
The vertical alignment team reviewed the first draft of the revised standards and made recommendations to the writing team.

Focus Groups 2023

Stakeholders from across the state, representing educators, parents, businesses, and higher education, reviewed the standards draft and provided recommendations to the writing team.

Advisory Team 2022-2023

The advisory team provided support and recommendations to the 2022 writing committee.


Office of Assessment and Standards Leadership Team and Education Associates

Staff within the Office of Assessment and Standards, Office of Early Learning and Literacy, and Office of Special Education Services worked alongside the review panel, writing committee, and vertical alignment team in support of the work.

The infographic below illustrates a visual representation of the 2023 Math Standards Writing Committee. Data includes demographic information such as race, gender, and location, as well as years of experience and professional expertise.

2022 Math Standards Writing Committee Participants

Selected participants were representative of the demographic characteristics of South Carolina in terms of gender, race and ethnicity, and region (education districts) as well as a range of years of experience and a variety of areas of expertise.

SC CCR Math Standards First Read: September 2023

South Carolina's Standards Revision Process

According to the South Carolina Educational Accountability Act of 1998 (S.C. Code Ann. § 59-18-110), the purpose of academic standards is to provide the basis for the development of local curricula and statewide assessments. The *2023 SC CCR Math Standards* were written in accordance with the cyclical review process as set by the South Carolina Department of Education and the Education Oversight Committee. The writing team was carefully selected from a pool of interested applicants and included South Carolina classroom teachers, instructional coaches, district leaders, and educators who specialize in working with multilingual learners, gifted learners, students with IEPs, career and technology education, and assessment. The team of writers was representative of South Carolina, and every effort was made to ensure districts of varying sizes and regions were represented. In addition, the *2023 SC CCR Math Standards* were developed under and supported by the leadership of numerous South Carolina Department of Education staff and offices from across the agency.

Prior to the math writing team revising the math standards, it considered feedback provided in the cyclical reviews from the State Department of Education and the Education Oversight Committees. The writing committee also referenced the 2005 National Adult Education Program (NAEP) Mathematics Framework, the 2021 Program for International Student Assessment (PISA) Mathematics Framework, and recommendations from the National Council of Teachers of Mathematics' (NCTM) Catalyzing Change resources for elementary, middle, and high school students. The NCTM highlights the importance of preparing all students for college mathematics and careers and ensuring that high school Math courses do not limit a student's ability to pursue postsecondary goals.

The purpose of the standards revision process was to design college- and career-ready standards that would ensure that students who complete high school in South Carolina are ready for college, career, and community. The *Profile of the South Carolina Graduate*, adopted by The State Board of Education and The Education Oversight Committee, was a touchstone during the revision of the standards. The process was designed to create Math standards that are clear, concise, aligned, and accessible to all students and educators in the state.

SECTION 59-18-350 of South Carolina states the following regarding state standards and assessments:

(A) The State Board of Education, in consultation with the Education Oversight Committee, shall provide for a cyclical review by academic area of the state standards and assessments to ensure that the standards and assessments are maintaining high expectations for learning and teaching. At a minimum, each academic area should be reviewed and updated every seven years. After each academic area is reviewed, a report on the recommended revisions must be presented to the Education Oversight Committee and the State Board of Education for consideration. The previous content standards shall remain in effect until the recommended revisions are adopted pursuant to Section 59-18-355. As a part of the review, a task force of parents, business and industry persons, community leaders, and educators, to include special education teachers, shall examine the standards and assessment system to determine rigor and relevance.

(B) For the purpose of developing new college and career readiness English/language arts and mathematics state content standards, a cyclical review must be performed pursuant to subsection (A) for English/language arts and mathematics state content standards not developed by the South Carolina Department of Education. The review must begin on or before January 1, 2015, and the new college and career readiness state content standards must be implemented for the 2015-2016 school year.

(C) The State Department of Education annually shall convene a team of curriculum experts to analyze the results of the assessments, including performance item by item. This analysis must yield a plan for disseminating additional information about the assessment results and instruction and the information must be disseminated to districts not later than January fifteenth of the subsequent year.

HISTORY: 1998 Act No. 400, Section 2; 2008 Act No. 282, Section 1, eff June 5, 2008; 2014 After each academic area is reviewed, a report on the recommended revisions must be presented to the State Board of Education and the Education Oversight Committee for approval. The mathematics standards development process was designed to develop clear, rigorous, and coherent standards for mathematics that will prepare students for success in college and/or careers. The South Carolina Profile of a College and Career-Ready Mathematics Student and the Profile of the South Carolina Graduate, served as the foundation that guided the mathematics writing team's determination of the components of South Carolina College- and Career-Ready Standards for Mathematics.

How to Read This Document

Overall Document Organization

The standards document is divided into four major strands: Numerical Reasoning (NR), Patterns, Algebra, and Functional Reasoning (PAFR), Data, Probability, and Statistical Reasoning (DPSR), and Measurement, Geometry, and Spatial Reasoning (MGSR). Neither the order of the strands nor the indicators within each strand are intended to prescribe an instructional sequence. Within each strand is a number of standards for the grade level. Each standard contains one or more vertically articulated grade-level indicators. The grade-level indicators set the end-of-year learning expectations, not instructional sequence. In most cases, the indicators progress from kindergarten through the completion of Geometry, Algebra 1, and Algebra 2 in high school. Upon completion of high school courses in Geometry and Algebra 1, students will have choices in math sequence based upon their college and career goals. The K-8 strands are presented in this document by grade level including the standards, indicators, and instructional insights. Each high school course is aligned to the appropriate strand and includes standards, indicators, and instructional considerations.

Coding

The coding of the *SC CCR Math Standards* is presented in a format showing the content area, grade/course level, strand code, standard number, and indicator number. A visual layout of the coding and a table including the strand codes are presented below.

Example: 6.NR.1.1

(Grade 6, Numerical Reasoning Strand, Standard 1, Indicator 1)

Strand	Abbreviation
Mathematical Process Standards	MPS
Data, Probability, and Statistical Reasoning	DPSR
Measurement, Geometry, and Spatial Reasoning	MGSR
Numerical Reasoning	NR
Patterns, Algebra, and Functional Reasoning	PAFR

High School Course	Abbreviation
Geometry with Statistics	GS
Algebra 1	A1
Algebra 2 with Probability	A2P
Pre-Calculus	PC
Calculus	C
Reasoning in Mathematics	RM
Applications and Modeling	AM
Statistical Modeling	SM
Discrete Mathematics	DM

Key Features

Grade-Level/Course Entrance Statements

Each grade level of standards is introduced with an entrance statement that outlines the general skills appropriate for students at that grade. Any major shifts are also included.

Mathematical Process Standards

Each set of grade level standards starts with the Mathematical Process Standards. Just as in content, the Mathematical Process Standards progress in complexity through the grade bands. The Indicator Insights for the Mathematical Process Standards contain descriptions of what the standards should look like in that specific grade band. The grade bands are K-2, 3-5, 6-8, and 9-12.

Standards and Indicators

According to the *Procedures for Cyclical Review of South Carolina Academic Standards*, "academic standards are statements of the most important, consensually determined expectations for student learning in a particular discipline. Each of the newly revised South Carolina standards statements will be supported by specific instructional objectives called indicators" (2016).

Each standard contains one or more vertically articulated grade-level indicators. The grade-level indicators set the end-of-year learning expectation. The order of indicators does not specify the order of instruction.

Indicator Insights

Indicator Insights provide an understanding of the indicator for the classroom teacher. These insights provide teachers with clarifying information about the expectations of the indicator and/or the content of the indicator. Some insights may provide connections to indicators in other standards or strands.

Appendices

- A- High School Math Course Pathways Graphic: This section provides insight into the possible pathways for students.
- B- Acknowledgments: This section details the members involved in the development of the SC CCR Math Standards.

South Carolina College- and Career-Ready Mathematics Standards K-12 Overview

SC CCR Math Standards are divided into four strands: Numerical Reasoning (NR); Patterns, Algebra, and Functional Reasoning (PAFR); Data, Probability, and Statistical Reasoning (DPSR), and Measurement, Geometry, and Spatial Reasoning (MGSR). Within each strand, there are grade level standards that students should know and be able to do upon the completion of the strand. Each standard contains indicators that have been vertically aligned from high school to kindergarten. These standards and indicators represent a balance of conceptual and procedural knowledge and specify the mathematics that students will master in each grade level and in each high school course.

SC CCR Mathematical Process Standards

The SC CCR Mathematical Process Standards demonstrate the ways in which students develop conceptual understanding of mathematical content and apply mathematical skills. As a result, the SC CCR Mathematical Process Standards should be integrated within the SC CCR Mathematics Standards for each grade level and course. Since the process standards drive the pedagogical component of teaching and serve as the means by which students should demonstrate understanding of the content standards, the process standards must be incorporated as an integral part of overall student expectations when assessing content understanding. Students who are college- and career-ready should take a productive and confident approach to mathematics. They can recognize that mathematics is achievable, sensible, useful, doable, and worthwhile. They also perceive themselves as effective learners and practitioners of mathematics and understand that a consistent effort in learning mathematics is beneficial. Since manipulatives and technology are integral to the development of mathematical understanding in all grade levels and courses, curriculum should support, and instructional approaches should include the use of a variety of concrete materials and technological tools to help students explore connections, make conjectures, formulate generalizations, draw conclusions, and discover new mathematical ideas. The Program for International Student Assessment (PISA) defines mathematical literacy as "an individual's capacity to formulate, employ, and interpret mathematics in a variety of contexts. It includes reasoning mathematically and using mathematical concepts, procedures, facts, and tools to describe, explain, and predict phenomena. It assists individuals to recognize the role that mathematics plays in the world and to make the well-founded judgments and decisions needed by constructive, engaged, and reflective citizens" (Organization for Economic Cooperation and Development, 2012).

Mathematical Process Standards

PROBLEM SOLVINGMPS.PS.1 Make sense of problems and persevere in solving them strategically.Students understand there are multi entry points that can identify and explain a problem. Using prior knowledge, a variety of methods, and continual self-reflection, students can check for reasonable solutions.REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	nd
Solving them strategically.explain a problem. Using prior knowledge, a variety of methods, and continual self-reflection, students can check for reasonable solutions.REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	
REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,knowledge, a variety of methods, and continual self-reflection, students can check for reasonable solutions. Students can monitor progress and confidently change course if necess to plan a solution pathway.REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	
REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	
REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,check for reasonable solutions. Students can monitor progress and confidently change course if necess to plan a solution pathway.REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can description	an
REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can monitor progress and confidently change course if necess to plan a solution pathway.REPRESENTATION confidently change course if necess to plan a solution pathway.Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can 	
REPRESENTATION & COMMUNICATIONMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Confidently change course if necess to plan a solution pathway.REPRESENTATION bMPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	
REPRESENTATION MPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,to plan a solution pathway.to plan a solution pathway.Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	
REPRESENTATION MPS.RC.1 Explain ideas using precise and contextually appropriate mathematical language,Students can consider the available relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	ary
& using precise and contextually appropriate mathematical language, relevant tools that are helpful to explore, model, and deepen their understanding of concepts. They can	
COMMUNICATIONcontextually appropriate mathematical language,explore, model, and deepen their understanding of concepts. They can	and
mathematical language, understanding of concepts. They ca	
	n
tools, and models. use precise mathematical language	to
model, explain, and justify valid	
solutions. Students can engage in	
constructive dialogue individually a	ınd
collaboratively through writing,	
speaking, and listening.	
CONNECTIONS MPS.C.1 Demonstrate aStudents can make connections	
deep and flexible between different areas of mathema	itics,
conceptual understanding other content areas, and real-world	
of mathematical ideas, context. They can identify applicab	le
operations, and quantities, interpret mathematical	
relationships while making models, and describe their relations	-
real-world connections. in the context of relevant situations	
ANALYZE & MPS.AJ.1 Use critical Students can construct arguments u	sıng
JUSTIFY thinking skills to reason multiple representations (objects,	
both abstractly and symbols, drawings, and actions). The symbols of the symbols o	ley
quantitatively. can recognize and explain bias and	1
errors in an argument. Mathematica students can listen and read the	.1
	thor
arguments of others to critique whe they make sense and ask questions	
clarification. Students can use	101
reasoning to make and explore the t	ruth
of conjectures.	uun
STRUCTURE & MPS.SP.1 Identify and Students can make and test conjectures.	ires
PATTERNS apply regularity in express regularities as generalization	
repeated reasoning to make about relationships then use the	
generalizations. generalizations to solve problems.	Thev
can recognize complex mathematic	•
objects and situations as being	
composed of multiple parts.	

New Elements

Informed by current, theoretical research and commitment to preparing all students in South Carolina to be college and/or career ready, the new standards include the following elements:

- 1. The progression of math courses includes offering Geometry prior to Algebra 1. This progression enables the standards for Geometry to be used as a concrete and pictorial representation for developing the concepts of the algebraic principles before moving to the abstract representations in Algebra 1, allowing students to be more successful in Algebra 1. Algebra 1 will remain the gateway course which will include the End of Course Assessment at the conclusion of the course. Foundations and Intermediate Algebra will no longer be available courses for students. The new Geometry course will provide students with the foundational skills necessary to be successful in Algebra 1. (See Appendix A)
- 2. The mathematical strands include a **focus on data**, **probability**, **and statistics in all grade levels**, ensuring that South Carolina graduates are prepared for real-world experiences. Probability and Statistics is not a stand-alone course; instead, the standards and indicators are a specific strand in grades K-12, and they are interwoven into high school courses to allow all students the opportunity to learn these important real-world skills prior to graduation.
- 3. Standards and indicators have been written for all high school courses in the progression, and, as appropriate, the courses are aligned to the four strands: Numerical Reasoning (NR), Patterns, Algebra, and Functional Reasoning (PAFR), Measurement, Geometry, and Spatial Reasoning (MGSR), and Data, Probability, and Statistical Reasoning (DPSR). Students have the opportunity to access numerous courses on the progression, and the courses contain the rigor necessary for all students to be successful in college and/or careers.

Alignment to the Profile of the South Carolina Graduate

South Carolina students will achieve readiness for college, career, and lifelong learning through the integration of various higher order thinking and mathematical skills. Those skills will be supported by standards, curriculum, instruction, local and state assessments, and by employing inquiry-based learning and encouraging student choice, to inspire creativity, innovation, and problem-solving ability. Knowledge and skills such as these are representative of the expectations of the *SC CCR Math Standards*.

PROFILE OF THE South Carolina Graduate

WORLD-CLASS KNOWLEDGE

Rigorous standards in language arts and math for career and college readiness

Multiple languages, science, technology, engineering, mathematics (STEM), arts and social sciences SKILLS Creativity and innovation

WORLD-CLASS

Critical thinking and problem solving Collaboration and teamwork Communication, information, media and technology Knowing how to learn

LIFE AND CAREER CHARACTERISTICS

Integrity • Self-direction • Global perspective • Perseverance • Work ethic • Interpersonal skills

© SCASA Superintendents' Roundtable

Adopted by: SC Arts in Basic Curriculum Steering Committee, SCASCD, SC Chamber of Commerce, SC Council on Competitiveness, SC Education Oversight Committee, SC State Board of Education, SC State Department of Education, TransformSC Schools and Districts.

SC CCR Math Standards First Read: September 2023

Kindergarten Math Standards

The standards are designed to provide students with knowledge and skills to solve problems using critically important skills for college and career readiness. The focus in kindergarten is concentrated within the strands of Numerical Reasoning; Patterns, Algebra, and Functional Reasoning; Data, Probability, and Statistical Reasoning; and Measurement, Geometry, and Spatial Reasoning.

For Numerical Reasoning, a major emphasis is given to building number sense for numbers zero to twenty. Kindergarten will focus on developing an understanding of counting to represent the total number of objects in a set. Additionally, students will use concrete representations to compare the quantity of two sets of objects. Opportunities should be given to use concrete objects to demonstrate that whole numbers can be composed and decomposed in a variety of ways. A major focus for students in kindergarten will be subitizing quantities to ten. This ability to subitize is crucial for students as it allows them to understand how whole numbers can be composed in numerous ways.

For Patterns, Algebra, and Functional Reasoning, kindergarteners will use multiple representations to reason and solve problems involving addition and subtraction. Students will use a variety of strategies for addition and subtraction within 10. A major focus for students in kindergarten will include building a strong conceptual foundation of addition and subtraction by exploring the relationship between these operations. Multiple opportunities with concrete and pictorial models should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations. In this grade, students will also use reasoning to extend and continue patterns.

For Data, Probability, and Statistical Reasoning this grade will collect, sort, analyze, and communicate data through various charts and graphs.

For Measurement, Geometry, and Spatial Reasoning, kindergarteners will identify coins and compare objects using measurement vocabulary. Students will also identify, describe, compare, and analyze two-dimensional and three-dimensional shapes based on their attributes.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Make meaning of a problem and use
SOLVING	problems and persevere in	prior knowledge as an entry point to
	solving them strategically.	begin, plan, and choose a solution
		pathway including acting out, making a
		model, or using reasoning strategies.
		Look for another solution strategy
		when the solution approach tried does
		not make sense or does not result in a
		reasonable answer.
		Make sense of the world by comparing
		and ordering objects by their attributes.
		Use concrete objects or pictures to
		show the actions or relationships in a
		problem such as counting, joining,
		separating, and comparing sets.
		Connect these actions to the meanings
		of the operations.
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse and actions to
&	using precise and	explain reasoning and select multiple
COMMUNICATION	contextually appropriate	representations that are helpful to
	mathematical language,	explore, model, and deepen
	tools, and models.	understanding of mathematical
		concepts.
		Draw pictures, construct models, share
		verbal mathematical reasoning, and
		include numerals to represent quantities
		and equations in a variety of formats,
		compare whole numbers, and use
		shapes and spatial reasoning to model
		and explore geometric objects in their
		environments.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Make connections applying counting and use the equal sign consistently and appropriately with real-world contexts. Explain how the number reached when counting on is a relationship between the quantity started from and the quantity added. Use precise language to describe why one quantity is fewer than, is more than, or is equal to (the same as) another and sort three-dimensional solid objects and two-dimensional shapes by different attributes (such as size or number of sides) and describe the attributes, using precise mathematical language.
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Listen to or read the explanations and logical arguments of others, decide whether they make sense, and ask questions to clarify or revise the arguments. Construct arguments using objects, drawings, diagrams, and actions. Make sense of correct solutions, even though solutions are not generalized or made formal. Investigate questions, gather, display, and/or identify similarities and differences in categorical data.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Recognize complex mathematical objects (including multi-digit numbers and shapes) and situations as being composed of multiple parts. Apply counting on, counting back, skip counting, and simple grouping strategies to combine or partition whole numbers. Continue shape patterns and number patterns based on ones, twos, fives, and tens.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
K.DPSR.1.1 Sort pictures or objects into at	Provide opportunities to sort data given the
least two categories. Count to determine how	categories. In addition, classify data by
many are in each category. Limit to 20	having students create categories and describe
pictures or objects.	how the items in each category were sorted.
	Categories may include shape, color, size, or
	type (animals, food, etc.).
	Identify any objects that do not belong to a
	particular group and explain the reasoning
	used.
K.DPSR.1.2 Answer questions about data	Data is collected and organized by the
organized in a t-chart, object graph, or picture	teacher. Real objects, such as teddy bear
graph.	counters, should be used when creating an
	object graph. Students are not expected to
	organize the data.
	Ask questions that require students to count
	the quantity in each category or compare the
	quantities.

K.DPSR.1. Collect and organize data and communicate through multiple representations.

Measurement, Geometry, and Spatial Reasoning

K.MGSR.1. Identify units of currency and compare the length or height of objects.

Indicator	Indicator Insight
K.MGSR.1.1 Identify a penny, nickel, dime,	Focus on the identification from visual
and quarter.	characteristics. Mention the values to prepare
	for future experience with money but do not
	assess students on it.
K.MGSR.1.2 Directly compare two objects	Students are introduced to attributes that can
using words including shorter, longer, taller,	be measured. Provide opportunities for
lighter, and heavier.	students to explore and discuss these
	attributes.

Indicator	Indicator Insight
K.MGSR.2.1 Identify and describe the	The teacher should use correct mathematical
attributes of triangles, squares, rectangles,	vocabulary when describing the attributes of
circles, cubes, and spheres to include	triangles, squares, rectangles, and circles.
everyday situations.	Show several types of triangles, not just
	equilateral.
	Show shapes in different orientations.
	Provide students with experiences to draw or
	make two-dimensional shapes and discuss the
	attributes.
K.MGSR.2.2 Describe relative positions of	Have students manipulate the objects in
objects by appropriately using terms	different ways to describe the objects'
including below, above, beside, between,	position.
inside, outside, in front of, or behind.	

K.MGSR.2. Analyze and describe shapes to make sense of their relationships in mathematical and real-world situations.

Numerical Reasoning

K.NR.1. Represent multi-digit numbers in a variety of ways to build the foundation for place value understanding.

Indicator	Indicator Insight
K.NR.1.1 Read, write, and represent the	Think of the term "written numeral" as
numerals 0 to 20 and represent the written	standard form.
numeral with concrete models.	Prior to students being able to write the
	numeral, they could match a numeral card to
	the quantity.
K.NR.1.2 Compose and decompose numbers	Exploration of considering ten as a unit in
from 11-19 into tens and ones by using	place value is further developed in first grade.
concrete objects, pictorial models, or	Base ten blocks should not be used. Instead,
drawings to demonstrate understanding that	students may use ten frames, linking cubes,
the teen numbers are composed of one set of	and math racks.
ten ones and a few more ones.	

K.NR.2. Demonstrate and ex	plain the relationship	between numbers and o	uantities.
	praint the relationship	seemeen namsers and q	aununu

Indicator	Indicator Insight
K.NR.2.1 Count forward by ones and tens to	This is rote counting. Counting forward is a
100 and backward from 10 by ones.	foundational skill for addition, and counting
	backward is a foundational skill for
	subtraction. Count forward by ones beginning
	from any number less than 100, making
	accurate decade transitions.

Indicator	Indicator Insight
K.NR.2.2 Subitize a quantity of up to 10	Conceptual subitizing is foundational for
objects in an organized arrangement without	composing and decomposing as well as part-
counting, explaining how one grouped the	part-whole.
objects within the set to determine the total	Organized arrangements might include five
quantity.	frames, ten frames, math racks, and dot
	images.
K.NR.2.3 Given a group of up to 20 objects,	Counting should be done using one-to-one
count the number of objects in that group and	correspondence, matching number names to
represent the number of objects with a written	individual items (rational counting). Provide
numeral. State the number of objects in a	opportunities to explain the number of objects
rearrangement of that group without	is the same regardless of their arrangement, if
recounting.	they are moved around, or the order in which
	they are counted changes (conservation of
	number)
K.NR.2.4 Given a number from 0 to 20, count	Instruction includes giving a number verbally
out that many objects.	or with a written numeral. Provide students
	with more objects than the number you are
	asking them to count out. For example, give
	the student 20 objects and ask them to count
	out 12.

K.NR.3. Demonstrate the ability to compare quantities of objects and numerals representing quantities of objects.

Indicator	Indicator Insight
K.NR.3.1 Compare up to 10 objects in one set	Use one-to-one matching and counting
to another set of up to 10 objects using the	strategies with concrete objects, pictorial
phrases more than, fewer than, or the same	representations, or number paths. They may
as.	be able to visually see which set is more than,
	fewer than, or the same as. Generally, "fewer
	than" and "more than" are used with
	countable nouns, such as teddy bear counters.
	Example: There are more red teddy bear
	counters. There are fewer yellow teddy bear
	counters.

Patterns, Algebra, and Functional Reasoning

K.PAFR.1 Develop an understanding of addition and subtraction operations with one-digit whole numbers and represent and solve addition problems with sums between 0 and 10 and subtraction problems using related facts.

Indicator	Indicator Insight
K.PAFR.1.1 Add and subtract number	Use visuals and concrete models, and five
combinations within 5.	frames to help provide structure for students.

Indicator	Indicator Insight
K.PAFR.1.2 Create a sum of 10 using objects	Teachers may record the equation to expose
and drawings when given one of two addends	students to the concept for future learning but
0-9, to include real-world situations.	should not assess the writing of the equation.
K.PAFR.1.3 Compose and decompose	Use objects, linking cubes, ten frames, math
numbers up to 10 in different ways. Record	racks, and drawings.
using objects or drawings.	Teachers may record the equation to expose
	students to the concept for future learning, but
	the expectation is not that students write the
	equation. The sum or difference can be
	represented on either side of the equal sign.
K.PAFR.1.4 Solve add-to/joining, take-	Situations should be modeled using concrete
from/separating, part-part-whole (total	objects, ten frames, fingers, math racks,
unknown), part-part-whole (both addends	number paths, acting out, drawings, mental
unknown) in real-world situations to find	images, or verbal explanations.
sums and differences within 10.	Teachers may record the equation to expose
	students, but the expectation is not that the
	student writes the equation.

K.PAFR.2. Recognize, describe, extend, and create patterns.

Indicator	Indicator Insight
K.PAFR.2.1 Describe, extend, and create (to	Letter patterns are only for teacher use to
the next term) simple repeating patterns in the	strategically represent a variety of patterns
form of AB, AAB, ABB, and ABC.	with students. Provide opportunities to name
	the objects in patterns using concrete objects
	and drawings.

First Grade Math Standards

The standards are designed to provide students with knowledge and skills to solve problems using critically important skills for college and career readiness. The focus in first grade is concentrated within the strands of Numerical Reasoning; Patterns, Algebra, and Functional Reasoning; Data, Probability, and Statistical Reasoning; and Measurement, Geometry, and Spatial Reasoning.

For Numerical Reasoning, a major emphasis is given to building number sense and place value understanding for numbers zero to 100. Students will continue to count, combining items into groups of ten to demonstrate place value structure. Additionally, students will use various representations to compare two numbers. Opportunities should be given to use concrete objects, drawings, and equations to demonstrate that whole numbers can be composed and decomposed in a variety of ways. Experiences should be given to allow students to partition shapes into equal parts as a building block for fractional understanding.

For Patterns, Algebra, and Functional Reasoning, first graders will use multiple representations to reason and solve problems involving addition and subtraction. Students will use a variety of strategies for addition and subtraction within 100. A major focus for students in first grade will include understanding the equal sign and building a strong conceptual foundation for addition and subtraction by exploring the relationship between these operations. Multiple opportunities with concrete and pictorial models should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations. In this grade, students will also use reasoning to create, describe, and extend patterns.

For Data, Probability, and Statistical Reasoning, students will create an investigative question, for which they will then collect data. Students will then sort, analyze, and communicate this data through various charts and graphs.

For Measurement, Geometry, and Spatial Reasoning, first graders will identify coins and bills by name and value. Additionally, students will count collections of like coins not to exceed a dollar. Students will begin telling time to the hour on analog and digital clocks. Students will also identify, describe, classify, construct, compare, and analyze two-dimensional and three-dimensional shapes based on their attributes.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Make meaning of a problem and use
SOLVING	problems and persevere in	prior knowledge as an entry point to
	solving them strategically.	begin, plan, and choose a solution
		pathway including acting out, making a
		model, or using reasoning strategies.
		Look for another solution strategy
		when the solution approach tried does
		not make sense or does not result in a
		reasonable answer.
		Make sense of the world by comparing
		and ordering objects by their attributes.
		Use concrete objects or pictures to
		show the actions or relationships in a
		problem such as counting, joining,
		separating, and comparing sets.
		Connect these actions to the meanings
		of the operations.
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse and actions to
&	using precise and	explain reasoning and select multiple
COMMUNICATION	contextually appropriate	representations that are helpful to
	mathematical language,	explore, model, and deepen
	tools, and models.	understanding of mathematical
		concepts.
		Draw pictures, construct models, share
		verbal mathematical reasoning, and
		include numerals to represent quantities
		and equations in a variety of formats,
		compare whole numbers, and use
		shapes and spatial reasoning to model
		and explore geometric objects in their
		environments.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Make connections applying counting and use the equal sign consistently and appropriately with real-world contexts. Explain how the number reached when counting on is a relationship between the quantity started from and the quantity added. Use precise language to describe why one quantity is fewer than, is more than, or is equal to (the same as) another and sort three-dimensional solid objects and two-dimensional shapes by different attributes (such as size or number of sides) and describe the attributes, using precise mathematical language.
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Listen to or read the explanations and logical arguments of others, decide whether they make sense, and ask questions to clarify or revise the arguments. Construct arguments using objects, drawings, diagrams, and actions. Make sense of correct solutions, even though solutions are not generalized or made formal. Investigate questions, gather, display, and/or identify similarities and differences in categorical data.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Recognize complex mathematical objects (including multi-digit numbers and shapes) and situations as being composed of multiple parts. Apply counting on, counting back, skip counting, and simple grouping strategies to combine or partition whole numbers. Continue shape patterns and number patterns based on ones, twos, fives, and tens.

Data, Probability, and Statistical Reasoning

hrough multiple representations.	
Indicator	Indicator Insight
1.DPSR.1.1 Sort pictures or objects into at	Provide opportunities to sort pictures or
least three categories (not to exceed ten items	objects into given categories. In addition,
in each category).	students should classify by creating their own
	categories.
1.DPSR.1.2 Create a survey question and	Provide opportunities to create a survey
collect data with up to three categories. Create	question, then decide what data to collect, and
tally charts, object graphs, and picture graphs	from whom to collect it. Answer the
with a single-unit scale to display the data.	following questions: Who? What? When?
Use the graph to answer questions and draw	Where? Why? How?
conclusions. Limit to one-step add-to, take-	Tally charts, object graphs, and picture graphs
from, and part-part-whole questions.	are appropriate for first grade.
	Provide experiences with both horizontal and
	vertical graphs.

1.DPSR.1. Create and answer survey questions, collect and analyze data, and communicate through multiple representations.

Measurement, Geometry, and Spatial Reasoning

1.MGSR.1. Describe, estimate, measure, and compare objects in real-world situations using
units of length, weight, money, and time.

Indicator	Indicator Insight
1.MGSR.1.1 Order three objects by length	Use actual objects that can be aligned with a
from shortest to longest and longest to	common starting point to compare.
shortest using direct comparison.	
1.MGSR.1.2 Use nonstandard physical	Prior to measuring with nonstandard objects,
objects to estimate and then measure the	have students make an estimate. Nonstandard
length of an item as the number of same size	units can include paper clips, popsicle sticks,
units of length with no gaps or overlaps.	pencils, etc.
1.MGSR.1.3 Use analog and digital clocks to	Teachers can begin to note and record AM
tell and record time to the hour and half hour.	and PM; however, this is not an expectation.
	Additionally, teachers can connect the idea of
	half of a circle to half an hour.
1.MGSR.1.4 Identify and write the values of a	Identify how different coins' values relate to
coin or a bill using a ¢ symbol for coin values	each other.
or \$ symbol for bills. Limited to penny,	
nickel, dime, quarter, one dollar bill, five-	
dollar bill, and ten-dollar bill.	
1.MGSR.1.5 Count a collection of like coins	Relate to patterns of counting by ones, fives,
to determine the total value of the set. Limit	and tens.
to pennies, nickels, and dimes with values not	
to exceed a dollar.	

In mathematical and real-world situations.	Indicator Insight
1.MGSR.2.1 Sort a mixed set of polygons and	The intent is not for students to sort into a
describe the reasoning used while sorting the	group of regular polygons and a second group
polygons.	of irregular polygons. The intent is to expose
	students to a wide variety of regular and
	irregular polygons of assorted sizes and
	orientations rather than just prototypical
	regular polygons. Provide opportunities for
	students to describe how they used one of
	more common attributes to group each set of
	shapes.
1.MGSR.2.2 Identify and describe the	Describe the attributes of the shape prior to
attributes of two-dimensional shapes and	providing the name. The teacher should use
three-dimensional shapes. Limit to triangle,	correct mathematical vocabulary, including
square, rectangle, rhombus, hexagon, circle,	sides/edges, faces, flat, straight, and
cone, cube, cylinder, square pyramid, and	<i>corners/vertex/vertices</i> , when describing the
sphere.	attributes. Provide opportunities to draw or
1.MGSR.2.3 Identify and describe a given	make the shapes. Reinforce mathematical language. For
shape in everyday situations to include two-	example: Use cube rather than box and sphere
dimensional shapes and three-dimensional	rather than ball, knowing that a representation
shapes. Limit to triangle, square, rectangle,	of each in the real-world could be a box or a
rhombus, hexagon, circle, cone, cube,	ball.
cylinder, square pyramid, and sphere.	Analyze and compare a pair of two-
	dimensional shapes or a pair of three-
	dimensional shapes of assorted sizes and
	orientations using formal mathematical
	language. Provide opportunities to compare a
	pair of shapes, using terms such as
	sides/edges, faces, flat, straight, and
	corners/vertex/vertices.
1.MGSR.2.4 Classify shapes as two-	The intent of this indicator is to have students
dimensional/flat or three-dimensional/solid	articulate the reasoning behind the
and explain the reasoning using formal	classification of a figure as two-dimensional
mathematical language. Limit to triangle,	or three-dimensional.
square, rectangle, rhombus, hexagon, circle,	
cone, cube, cylinder, square pyramid, and	
sphere.	

1.MGSR.2. Analyze, describe, and manipulate shapes to make sense of their relationships in mathematical and real-world situations.

Indicator	Indicator Insight
1.MGSR.2.5 Analyze and compare a pair of	Provide opportunities to compare a pair of
two-dimensional shapes or a pair of three-	shapes, using terms such as <i>sides/edges</i> ,
dimensional shapes of assorted sizes and	faces, flat, straight, and
orientations using formal mathematical	corners/vertex/vertices.
language. Limit to triangle, square, rectangle,	
rhombus, hexagon, circle, cone, cube,	
cylinder, square pyramid, and sphere.	

Numerical Reasoning

1.NR.1. Represent multi-digit numbers in a variety of ways to build place value understanding.

Indicator	Indicator Insight
1.NR.1.1 Read, write, and represent numbers	Base ten language refers to identifying the
to 100 using concrete models, drawings,	number of tens and ones in a numeral. For
standard form, base ten language, and	example: 6 tens 3 ones. Base ten blocks
equations in expanded form.	should not be used at this level due to their
	inability to be broken apart into individual
	units.
1.NR.1.2 Represent and explain that whole	Provide experiences using concrete materials,
numbers 1 through 99 are organized into	such as popsicle sticks, straws, etc. to make a
groups of tens and ones, and a digit has a	bundle of ten. Given a collection of objects,
different value depending on its placement.	students can count the objects and group them
	by tens.
1.NR.1.3 Compose and decompose whole	The focus of this indicator is on developing
numbers from 1 through 99 in more than one	place value concepts.
way using tens and ones. Explain and	This indicator serves as a prerequisite for
demonstrate each composition or	regrouping when adding and subtracting with
decomposition with the use of concrete	two-digit numbers.
models, drawings, and/or equations.	Base ten blocks should not be used at this
	level due to their inability to be broken apart
	into individual units. Instead, provide
	experiences bundling and unbundling groups
	of ten objects to compose and decompose
	numbers in multiple ways. Objects such as
	coffee stirrers, straws, popsicle sticks, etc.
	could be used.
1.NR.1.4 Apply place value reasoning to	Hundred charts to include the bottom-up
identify the number that is one more and one	chart, 100-bead math racks, and connecting
less, ten more, and ten less than a given	cubes can be used to develop conceptual
number with up to two digits.	understanding. It is important for
	mathematicians to discover the pattern on a
	hundred chart by using concrete models and
	connecting to the chart.
	connecting to the chart.

1.NR.2. Represent partitioned shapes in multiple ways using part-whole relationships.

Indicator	Indicator Insight
1.NR.2.1 Partition in multiple ways squares,	This indicator is foundational for fraction
rectangles, and circles into two or four equal-	work in third grade. It is imperative that
sized parts. Name the pieces as halves and	students look at equal-sized parts. Do not use
fourths.	"quarters" to name the pieces.

1.NR.3. Explain the relationship between numbers and quantities.

Indicator	Indicator Insight
1.NR.3.1 Count by ones forward or backward starting at any number up to 120 making accurate decade transitions.	Make connections between counting on and counting back. When doing choral counting, the teacher could also record the count for students so that they can look for and describe patterns.
1.NR.3.2 Skip count by fives and tens from any multiple of five to 100, identifying place value patterns in the sequence.	Record counts on the board, chart paper, hundred chart, etc. Have students identify the patterns that they notice.

1.NR.4. Demonstrate the ability to compare quantities of objects and numerals representing quantities of objects.

Indicator	Indicator Insight
1.NR.4.1 Compare representations of two	It is especially important to use mathematical
numbers up to 100 using the phrases is	phrases with students. Teach reading the
greater than, is less than, or is equal to (the	number sentence from left to right.
same value as).	Use concrete objects or pictorial
	representations to compare sets prior to
	comparing just numerals.
	A number path or hundred chart can also be
	used to locate and compare numbers.
	Representations can include concrete models,
	drawings, number lines or number paths,
	hundred charts, and different number forms
	(standard, base ten, or expanded form).

Patterns, Algebra, and Functional Reasoning

Indicator	Indicator Insight
1.PAFR.1.1 Determine and explain if an	Encourage the use of concrete objects or
equation within 10 is true using a variety of	drawings while students are explaining
equation formats.	whether the equation is true or balanced. It is
	especially important to develop an
	understanding of the meaning of the equal
	sign.
	Provide opportunities to see equations
	formatted in a variety of ways. This includes
	equations with the addends to the left of the
	equal sign, the right of the equal sign, and
	two addition and/or subtraction sentences on
	both sides of the equal sign. Both sides of the
	equal sign may contain two addends.
	The = symbol should be read as "has the same $read = read = read$
	value as" or "is equal to."
1.PAFR.1.2 Compose and decompose numbers less than or equal to 20 in more than	Initially, visuals, concrete objects, or
one way. Record each composition or	drawings should be used as a tool for conceptual understanding. Eventually,
decomposition as an equation.	students should be able to mentally compose
decomposition as an equation.	and decompose flexibly. For example, 13 can
	be decomposed as $13 = 7 + 6$ or as $13 = 8 + 5$.
1.PAFR.1.3 Solve add-to, take-from, and	Use Numberless Word Problems and ask
part-part-whole real-world situations to find	students to justify why they are using a
sums and differences within 20. Situations	certain operation. Use concrete objects or
should include result or change unknown,	drawings.
both addends unknown, and total or one part	Write the equations that go with each
unknown.	problem, with students writing them when
	they can do so.
	Provide opportunities for students to create
	their own real-world situation to represent a
	given equation or expression involving
	addition and subtraction within 20.
1.PAFR.1.4 Add and subtract number	Provide opportunities to think flexibly to add
combinations flexibly and accurately within	and subtract. Fluency can be described as
10.	knowing how a number can be composed and
	decomposed to solve problems accurately,
	efficiently, and flexibly.

1.PAFR.1. Understand and apply properties of operations and the relationship between addition and subtraction to solve problems.

Indicator	Indicator Insight
1.PAFR.1.5 Apply and explain the <i>Commutative Property of Addition</i> to find the sum (through 20) of two addends and explain	Provide opportunities for students to use concrete manipulatives. Encourage students to explain what they notice to enable their
that the value does not change when the order of the two numbers changes.	discoveries. The expectation is to apply the property, not to name the property; however, use the term <i>Commutative Property</i> so that students are used to hearing it and begin to use it on their own.
1.PAFR.1.6 Determine an unknown number in addition and subtraction equations within 10.	Representations should include using concrete objects, models, and/or drawings. Mental math, such as think addition, could also be a strategy.

1.PAFR.2. Represent and solve multi-digit addition and subtraction problems using additive reasoning.

Indicator	Indicator Insight
1.PAFR.2.1 Find the sum of a two-digit	Justification strategies should include the use
number and a one-digit number or a two-digit	of concrete models, drawings, and oral
number and a multiple of 10 (1-99) using	explanations.
concrete models, drawing and strategies that	Students do not need to know the names of
reflect place value understanding, the inverse	the properties of operations but should be able
relationship of addition and subtraction, and	to apply them when needed.
the properties of the operations to justify the	
sum.	
1.PAFR.2.2 Find the difference between two	Include concrete models, drawings, or
numbers that are multiples of 10 both in the	reasoning strategies based on place value.
range 10 to 90 and write the corresponding	
equation. Explain the reasoning used.	

1.PAFR.3. Recognize, describe, extend, and c	create patterns.
--	------------------

Indicator	Indicator Insight
1.PAFR.3.1 Create, describe, and extend (to	Use concrete objects or drawings, not
the next term) a growing shape pattern.	numbers or letters. The shape pattern can
	include concrete objects or drawings, but not
	numbers. Students will need practice with
	describing and extending given shape patterns
	before they are asked to create their own.

Indicator	Indicator Insight
1.PAFR.3.2 Create, describe, and extend (to	Use concrete objects or drawings.
three terms within a sequence) repeating	Letter patterns are only for teacher use to
patterns using AB, AAB, ABB, and ABC type	strategically represent a variety of patterns
patterns.	with students. Name the objects in patterns
	using concrete objects and
	drawings. Teachers might consider using
	ordinal numbers to describe the elements.
	Provide practice with describing and
	extending given patterns before they are
	asked to create their own.

Second Grade Math Standards

The standards are designed to provide students with knowledge and skills to solve problems using critically important skills for college and career readiness. The focus in Second Grade is concentrated within the strands of Numerical Reasoning; Patterns, Algebra, and Functional Reasoning; Data, Probability, and Statistical Reasoning; and Measurement, Geometry, and Spatial Reasoning.

For Numerical Reasoning, a major emphasis is given to building number sense and place value understanding for numbers zero to 999. Students will continue to count to combine items into groups of ten or 100 to demonstrate place value structure. Additionally, students will use various representations to compare two numbers. Opportunities should be given to use concrete objects, drawings, and equations to demonstrate that whole numbers can be composed and decomposed in a variety of ways. Experiences should be given to allow students to use multiple ways to partition shapes into halves and fourths as a building block for fractional understanding. As a precursor to rounding, when given a two-digit number, students should identify to which multiple of ten the number is closer.

For Patterns, Algebra, and Functional Reasoning, second graders will use multiple representations to reason and solve problems involving addition and subtraction. Students will use a variety of strategies for addition and subtraction within 999. A major focus for students in second grade will include understanding the equal sign and building a strong conceptual foundation of addition and subtraction by exploring the relationship between these operations. Multiple opportunities with concrete and pictorial models should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations. Students will begin using arrays as an early connection between addition and multiplication. In this grade, students will also use reasoning to recognize, describe, extend, and create patterns.

For Data, Probability, and Statistical Reasoning, students will create an investigative question for which they will then collect data. Students will then sort, analyze, communicate, and represent this data through various charts and graphs.

For Measurement, Geometry, and Spatial Reasoning second graders will identify and write the values of coins and bills. Additionally, students will count collections of mixed coins not to exceed one dollar while collections of mixed bills should also be counted with the total value not to exceed 100 dollars. Students will use analog and digital clocks to tell and record time in five-minute intervals. In addition, second graders will experiment with the length of objects using appropriate tools. Students will also identify, describe, classify, construct, compare, and analyze two-dimensional and three-dimensional shapes based on their attributes.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Make meaning of a problem and use
SOLVING	problems and persevere in	prior knowledge as an entry point to
	solving them strategically.	begin, plan, and choose a solution
		pathway including acting out, making a
		model, or using reasoning strategies.
		Look for another solution strategy
		when the solution approach tried does
		not make sense or does not result in a
		reasonable answer.
		Make sense of the world by comparing
		and ordering objects by their attributes.
		Use concrete objects or pictures to
		show the actions or relationships in a
		problem such as counting, joining,
		separating, and comparing sets.
		Connect these actions to the meanings
		of the operations.
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse and actions to
&	using precise and	explain reasoning and select multiple
COMMUNICATION	contextually appropriate	representations that are helpful to
	mathematical language,	explore, model, and deepen
	tools, and models.	understanding of mathematical
		concepts.
		Draw pictures, construct models, share
		verbal mathematical reasoning, and
		include numerals to represent quantities
		and equations in a variety of formats,
		compare whole numbers, and use
		shapes and spatial reasoning to model
		and explore geometric objects in their
		environments.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Make connections applying counting and use the equal sign consistently and appropriately with real-world contexts. Explain how the number reached when counting on is a relationship between the quantity started from and the quantity added. Use precise language to describe why one quantity is fewer than, is more than, or is equal to (the same as) another and sort three-dimensional solid objects and two-dimensional shapes by different attributes (such as size or number of sides) and describe the attributes, using precise mathematical language.
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Listen to or read the explanations and logical arguments of others, decide whether they make sense, and ask questions to clarify or revise the arguments. Construct arguments using objects, drawings, diagrams, and actions. Make sense of correct solutions, even though solutions are not generalized or made formal. Investigate questions, gather, display, and/or identify similarities and differences in categorical data.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Recognize complex mathematical objects (including multi-digit numbers and shapes) and situations as being composed of multiple parts. Apply counting on, counting back, skip counting, and simple grouping strategies to combine or partition whole numbers. Continue shape patterns and number patterns based on ones, twos, fives, and tens.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
2.DPSR.1.1 Create a survey question and	Provide opportunities to create a survey
collect data with up to four categories. Create	question, then decide what data to collect, and
tally charts, picture graphs, dot plots, and bar	from whom to collect it. Answer the
graphs with a single-unit scale to read the	following questions: Who? What? When?
graph, answer questions, and draw	Where? Why? How?
conclusions. Limit to one-step add-to, take-	Provide experiences with both horizontal and
from, part-part-whole, and comparison	vertical graphs.
questions.	Compare different data collected in the
	categories. Categories are identified by names
	or descriptions and amounts are numerical.
	Appropriate questions should not ask students
	to add or subtract data from more than two
	categories.

2.DPSR.1. Create and answer survey questions, collect and analyze data, and communicate through multiple representations.

Measurement, Geometry, and Spatial Reasoning

2.MGSR.1. Describe, estimate, measure, and compare objects in real-world situations using
units of length, weight, currency, and time.

Indicator	Indicator Insight
2.MGSR.1.1 Select and use appropriate tools	Explore length as an attribute of an object
to estimate and measure length of an object or	found by locating two endpoints and finding
distance to the nearest customary unit. Limit	how far it is between those two points.
to inches, feet, and yards.	Talk about how to use a ruler. Link rulers to
	number lines (continuous units).
2.MGSR.1.2 Use analog and digital clocks to	Point out that the numbers on a clock are
tell and record time in five-minute intervals,	made of two different circular number lines,
identifying AM and PM.	one going from 1 to 12 and the other going
	from 0 to 60.
2.MGSR.1.3 Determine the value of mixed	Coins and bills are not counted together in
sets of coins or bills in mathematical and real-	this indicator.
world situations and record the value using a	
¢ or \$ symbol. Limit to pennies, nickels,	
dimes, and quarters up to a dollar; one-dollar	
bills, five-dollar bills, ten-dollar bills, and	
twenty-dollar bills up to \$100, and add-to or	
take-from problem types.	

in mathematical and real-world situations.	
Indicator	Indicator Insight
2.MGSR.2.1 Identify and describe a given	Reinforce mathematical language. For
shape in everyday situations to include two-	example: use cube rather than box and sphere
dimensional shapes and three-dimensional	rather than ball, knowing that a representation
shapes. Limit to triangle, quadrilateral,	of each in the real-world could be a box or a
pentagon, hexagon, octagon, circle, cone,	ball. Provide opportunities to explore the
cube, cylinder, rectangular prism, square	faces and the shape of each face.
pyramid, and sphere.	
2.MGSR.2.2 Classify shapes as polygons or	Provide experiences with a variety of straight-
non-polygons and defend that determination	edged and curved and closed and open two-
based on their attributes.	dimensional figures. Defining attributes
	include the number of sides and vertices.
2.MGSR.2.3 Classify two-dimensional shapes	Students need to see and classify a wide
as triangles or quadrilaterals and justify each	variety of triangles and quadrilaterals, not just
classification.	the standard triangles and quadrilaterals, as
	well as a variety of orientations.

2.MGSR.2. Analyze, describe, and manipulate shapes to make sense of their relationships in mathematical and real-world situations.

Numerical Reasoning

2.NR.1. Represent multi-digit numbers in a variety of ways to build place value understanding.

Indicator	Indicator Insight
2.NR.1.1 Read, write, and represent numbers	Represent numbers with proportional
up to 999 using concrete models, drawings,	materials such as base ten blocks, sketches, or
standard form, base ten language, and	numerical notation.
equations in expanded form.	Provide experiences with placing numbers on
	an open number line.
	Base ten language refers to identifying the
	number of hundreds, tens, and ones in a
	numeral. For example: 4 hundreds 9 tens 6
	ones.
2.NR.1.2 Represent and explain that whole	The focus of this indicator is on developing
numbers 1 through 999 are organized into	place value concepts. Provide experiences
groups of hundreds, tens, and ones, and a	with concrete materials, such as base ten
digit has a different value depending on its	blocks, popsicle sticks, straws, etc. to
placement.	represent the value of each digit and show
	that 100 is a bundle of 10 tens and 1 ten is a
	bundle of 10 ones. Given a collection of
	objects, students can count the objects and
	group them by hundreds, tens, and ones.

Indicator	Indicator Insight
2.NR.1.3 Compose and decompose whole	The focus of this indicator is on place value.
numbers from 1 through 999 in more than one	This indicator serves as a prerequisite for
way using hundreds, tens, and ones. Explain	regrouping when adding and subtracting with
and demonstrate each composition or	three-digit numbers. Provide experiences with
decomposition with the use of concrete	bundling and unbundling groups of objects,
models, drawings, and equations.	including but not limited to popsicle sticks,
	straws, etc.
2.NR.1.4 Apply place value reasoning to	Students need experience with concrete
identify the number that is 10 more, 10 less,	models and drawings before moving to the
100 more, and 100 less than a given three-	abstract. Ask students what patterns they
digit number through 999.	notice in the place values as they are adding
	or subtracting tens and hundreds.

2.NR.2. Represent and compare partitioned shapes in multiple ways using part-whole relationships.

Indicator	Indicator Insight
2.NR.2.1 Partition in multiple ways squares,	This indicator is foundational for fraction
rectangles, and circles into two or four equal-	work in third grade. Although students are not
sized parts, and describe the parts using the	expected to use formal fraction notation,
words halves, fourths, a half of, and a fourth	expose students to fraction notation. When
of (not quarters).	writing fractions, they should be written with
	a horizontal bar (vinculum), not slanted. The
	expectation is not that students write the
	fraction.
	Name the whole as two halves, or four
	fourths.
2.NR.2.2 Explain that when partitioning a	This indicator is foundational for fraction
square, rectangle, or circle into two or four	work in third grade.
equal parts, the parts become smaller as the	
number of parts increases.	

2.NR.3. Explain the relationship between numbers and quantities.

Indicator	Indicator Insight
2.NR.3.1 Count forward and backward by	Provide counting experiences on a regular
ones, tens, and hundreds from any number	basis When doing choral counting, the
within 999 and identify patterns in the	teacher should also record the count for
sequence.	students so that they can look for and describe
	patterns.

Indicator	Indicator Insight
2.NR.4.1 Compare representations of whole	It is especially important to use mathematical
numbers up to 999 and write a comparison	phrases with students and to make sure that
statement using words and symbols. Limit to	students can read the symbols correctly.
is equal to $(=)$, is less than $(<)$, and/or is	Representations can include concrete models,
greater than (>).	drawings, number lines, and different number
	forms (standard, base ten, or expanded form).
	Locate whole numbers on a number line to
	compare them. Expose students to both
	vertical and horizontal number lines.
	Emphasize the understanding that numbers to
	the right or above a number on a number line
	are greater and numbers to the left or below
	are less.
2.NR.4.2 When given a two-digit number,	Use number lines and concrete base ten
identify to which multiple of ten the number	models. Second grade transitions from a
is closest.	number path to the use of a number line.
	If the number has a 5 in the one's place, the
	accepted convention of going to the higher
	multiple of 10 should be shared.
	This is a precursor to rounding.

2.NR.4. Demonstrate the ability to compare quantities of objects and numerals representing quantities of objects.

Patterns, Algebra, and Functional Reasoning

2.PAFR.1. Represent and solve multi-digit addition and subtraction problems using additive reasoning.

Indicator	Indicator Insight
2.PAFR.1.1 Use a strategy to accurately find	Provide opportunities to select a strategy to
sums and differences of two-digit numbers	calculate. Use concrete base ten materials,
within 100 and justify the sum or difference.	number lines, drawings, place value
	understanding, and properties of the
	operations. This indicator is about building
	conceptual understanding, not about
	practicing a standard algorithm.

Indicator	Indicator Insight
2.PAFR.2.1 Determine and explain if an equation (within 20) is true using a variety of equation formats.	Apply understanding of the equal sign as a symbol of equality. Recognize that the solution (sum or difference) can be located on either side of the equal sign. For example, equations can be formatted in the following ways: 6 = 2 + 4 3 + 3 = 1 + 5 9 - 3 = 6 6 = 6
2.PAFR.2.2 Solve one-step add-to, take-from, part-part-whole, and additive comparison real-world situations through 99 with the unknown in any position.	Students may use concrete models, drawings, verbal explanations, expressions, and equations. Provide opportunities for students to create their own real-world situation to represent a given equation or expression involving addition and subtraction through 99. Provide contexts that include measurement situations with inches, feet, and yards.
2.PAFR.2.3 For any number from 0 to 99, find the number that makes 100 when added to the given number.	Find and record the answer using concrete materials, a number line, drawing, or equation. Concrete materials could include items such as 100-bead math racks, connecting cubes, base ten blocks, and ten frames,
2.PAFR.2.4 Add and subtract number combinations flexibly and accurately within 20.	Provide opportunities to think flexibly to add and subtract. Fluency can be described as knowing how a number can be composed and decomposed to solve problems accurately, efficiently, and flexibly. Provide experiences with concrete models, such as ten frames, double ten frames, and math racks, and visuals. This is necessary for students to develop derived facts (doubles plus one, make ten, etc.).

2.PAFR.2. Understand and apply properties of operations and the relationship between addition and subtraction to solve problems.

Indicator	Indicator Insight
2.PAFR.2.5 Apply the <i>Associative Property</i> of <i>Addition</i> to find the sum (through 20) of three addends and explain that the value can be found using various grouping strategies.	During this first exposure to the <i>Associative</i> <i>Property</i> , the intent is for students to see that numbers can be decomposed and then recomposed to help make addition more efficient and flexible. For example, if given the numbers 4, 7, and 3 a student could combine the 7 and 3 to first make a ten or combine the 4 and 3 to help make doubles. The expectation is to apply the property, not to name the property or use parentheses; however, the teacher should use the term <i>Associative Property</i> so that students are used to hearing it.
2.PAFR.2.6 Determine the unknown number in addition and subtraction equations within 20, with the unknown in any position.	Representations should include using concrete objects, models, or drawings. Unknowns should be represented by an empty box or a question mark, not a blank space. Students may restate a subtraction problem as a missing addend problem (think addition) using the inverse relationship between addition and subtraction.
2.PAFR.2.7 Sort a collection of 20 or fewer objects into two groups to determine if the number of objects is even or odd.	Students may use a pairing strategy to identify whether a number is odd or even.
2.PAFR.2.8 Find the total number of objects arranged in equal groups or in a rectangular array and write an addition equation to express the total as a sum (up to 25) of equal addends.	Repeated addition is an early connection between addition and multiplication but should not be focused on as a solution strategy for multiplication problems. Instead, the focus should be on equal groups or rows and columns.

2.PAFR.3. Recognize, describe, extend, and create patterns.

Indicator	Indicator Insight
2.PAFR.3.1 Describe, extend, and create a growing shape pattern with up to three terms within a sequence.	The shape pattern can include concrete objects or drawings, but not numbers. Provide practice with describing and extending given shape patterns before they are asked to create their own.
2.PAFR.3.2 Create, describe, and extend an appropriate one-step rule for number patterns using addition and subtraction within 100.	Provide practice with describing and extending given number patterns before they are asked to create their own.

Third Grade Math Standards

The standards are designed to provide students with knowledge and skills to solve problems using critically important skills for college and career readiness. The focus in third grade is concentrated within the strands of Numerical Reasoning; Patterns, Algebra, and Functional Reasoning; Data, Probability, and Statistical Reasoning; and Measurement, Geometric and Spatial Reasoning.

For Numerical Reasoning, this grade will continue to represent and compare whole numbers using relationships within the base ten number system. A major focus for students in third grade will include building a strong conceptual foundation of fractions. They will represent and compare fractions based upon part-whole relationships using concrete, area, and linear models.

For Patterns, Algebra, and Functional Reasoning, third grade will use multiple representations to reason and solve problems involving operational properties of whole numbers. Students will continue using a variety of strategies for addition and subtraction which have been previously introduced in earlier grades. A major focus for students in third grade will include building a strong conceptual foundation of multiplication and division by exploring the relationship between these operations. The extension of knowledge will lead to the ability to solve multi-digit problems in fourth and fifth grades. Multiple opportunities with concrete and pictorial models should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations. In third grade, students will use reasoning to represent and solve algebraic and numerical situations involving unknowns and patterns.

For Data, Probability, and Statistical Reasoning, third graders will collect and analyze data and communicate through various tables, charts, and graphs. In this grade, students extend their analysis from content in second grade to scaled graphs. Probability is introduced for the first time as students will represent the likelihood of a simple event occurring. This understanding will extend in fourth and fifth grades as students collect data from a probability experiment and record it as fractions.

For Measurement, Geometry, and Spatial Reasoning, third grade will solve area and perimeter problems in real-world and mathematical situations. This is the first time students will be introduced to area and perimeter in addition to distinguishing when to use these measurements in real-world situations. A focus should include connecting area and multiplication. When determining the area, students will use squares and rectangles. When determining perimeter, students will use triangles and quadrilaterals. Students will measure customary and metric units of length. In previous grades, students have been telling time and this learning will now focus on third grade students determining elapsed time to the half hour and using analog and digital clocks to tell and record time in one-minute intervals. In third grade, students will continue to determine the value of collections of money greater than \$1 using coins and bills with the amount now recorded using decimal notation.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Make meaning of a problem and use
SOLVING	problems and persevere in	prior knowledge as an entry point to
	solving them strategically.	begin, plan, and choose a solution
		pathway.
		Look for another solution strategy
		when the solution approach tried does
		not make sense or does not result in a
		reasonable answer.
		Use concrete objects, pictures, or
		equations to explain conjectures and
		solve problems.
		Compare strategies to understand
		different approaches to solve relevant
		problems that involve multiple steps
		using operations with rational numbers.
		Use mathematical modeling to
		represent, analyze, and make predictions using data.
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	justify a conjecture.
COMMUNICATION	contextually appropriate	Be specific with explanations by using
commenterment	mathematical language,	objects, pictures, and symbols when
	tools, and models.	describing the relationship between the
		operations.
		Use properties of operations to justify
		equivalence of fractions and different
		expressions.
		Provide manipulatives to encourage
		concrete understanding.
		Represent rational numbers in a variety
		of forms.
		Name and categorize shapes and use
		appropriate tools and units of
CONDUCTIONS		measurement for the quantities given.
CONNECTIONS	MPS.C.1 Demonstrate a	Make connections applying number
	deep and flexible	sense with real-world context. Describe fractions and decimals both as
	conceptual understanding of mathematical ideas,	
	operations, and	parts of other numbers and analyze visual representations that support
	relationships while making	understanding of fractions.
	real-world connections.	Make sense of missing numbers in
	rear world connections.	equations by using the relationships
		between addition, subtraction,
		multiplication, and division.
		multiplication, and division.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Critique the arguments of others,
JUSTIFY	thinking skills to reason	decide whether they make sense, and
	both abstractly and	ask questions to clarify or revise the
	quantitatively.	arguments.
		Construct arguments using objects,
		concrete materials, drawings, diagrams,
		actions, and mathematical symbols.
		Make sense and confirm correct
		answers, even though solutions are not
		generalized or made formal.
		Reason inductively about data, making
		reasonable arguments that consider the
		context from which the data arose.
		Critique when making comparisons
		with fractions that refer to different
		wholes.
STRUCTURE &	MPS.SP.1 Identify and	Recognize complex mathematical
PATTERNS	apply regularity in	objects, including multi-digit numbers
	repeated reasoning to make	and shapes, and situations as being
	generalizations.	composed of multiple parts.
		Apply basic addition and subtraction facts, simple multiplication facts, and
		knowledge of place value and related
		division facts to combine or partition
		whole numbers, find fractions of sets,
		shapes, and quantities, and recognize
		area and perimeter formulas.
		Create and continue spatial and number
		patterns based on addition, subtraction,
		· · ·
		or simple multiplication.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
3.DPSR.1.1 Collect and organize categorical	Categorical data can be represented using bar
and numerical data based on observations,	graphs and picture graphs that are displayed
surveys, experiments, and investigations with	horizontally or vertically.
whole number values using tables, scaled	Numerical data can be represented using dot
picture graphs, scaled bar graphs, or dot plots.	plots and bar graphs.
Use titles and labels. Limit scales to 1, 2, 5,	Use data from science and social studies
and 10.	content.

Indicator	Indicator Insight
3.DPSR.1.2 Solve one-step, real-world	Do not use data with outliers.
problems using whole number data	
represented in tables, scaled picture graphs,	
scaled bar graphs, or dot plots. Limit scales to	
1, 2, 5, 10.	

3.DPSR.2. Represent the probability of simple events by conducting experiments to determine possible outcomes.

Indicator	Indicator Insight
3.DPSR.2.1 Identify the possible outcomes of	For example: when rolling a die, the possible
a simple event.	outcomes are 1, 2, 3, 4, 5, or 6. Rolling a 9 is
	not a possible outcome. This is the first time
	that probability is introduced as a simple
	event. A simple event could include but is not
	limited to spinning a spinner, tossing a die,
	drawing one card, or flipping a coin.

Measurement, Geometry, and Spatial Reasoning

3.MGSR.1. Solve area and perimeter problems in real-world and mathematical situation	
Indicator	Indicator Insight
3.MGSR.1.1 Determine the area of squares	Explore area as an attribute that involves the
and rectangles presented in relevant problems	covering of two-dimensional space. When
by covering the space with square units and	tiling, there should be no gaps or overlaps.
counting the total number of units needed.	Provide opportunities for students to use
	square tiles, grid paper, and/or dot paper.
	Use square units to label area measurements.
	To make connections to multiplication, it is
	important for students to discover the
	relationship between the two side lengths of
	the rectangle and the area.
3.MGSR.1.2 Determine the perimeter of	Explore perimeter as the length/distance
regular and irregular triangles and	around the sides of a two-dimensional shape.
quadrilaterals with known side lengths.	Provide exposure to finding the perimeter of
	other polygons, but the emphasis should be on
	regular and irregular triangles and
	quadrilaterals.
	Composite quadrilaterals are not an
	expectation.
3.MGSR.1.3 Determine if a real-world	Understand the difference between a measure
situation is an example of the need for finding	of length (perimeter) and a measure of
the area or the perimeter of a figure.	covering space (area).
	Students would not be expected to solve for
	perimeter or area for this indicator.

3.MGSR.1. Solve area and perimeter problems in real-world and mathematical situations.

3.MGSR.2. Estimate and measure using units of length, liquid volume, currency, and intervals of time.

	x 1 x x x x
Indicator	Indicator Insight
3.MGSR.2.1 Determine the value of any	Provide experiences with collections with
collection of coins not to exceed \$5. Write the	front and back sides of coins.
amount in the form of dollars and cents using	
the decimal notation. Limit to penny, nickel,	
dime, and quarter.	
3.MGSR.2.2 Use analog and digital clocks to	In second grade, students used analog and
tell and record time to one-minute intervals,	digital clocks to tell and record time to 5-
identifying AM and PM.	minute intervals.
3.MGSR.2.3 Solve problems involving	Use a number line to represent adding or
addition and subtraction of time intervals to	subtracting hours and/or half hours. The
determine elapsed time to the nearest half	expectation is not to add or subtract times that
hour.	cross noon or midnight. Start times should
	begin on the hour or half hour.
3.MGSR.2.4 Estimate and measure	Connect the ruler to the number line.
length/distance to the nearest half inch and	Centimeter is the first mention of the metric
nearest whole centimeter.	system.
3.MGSR.2.5 Determine which unit of liquid	Show containers that will represent each of
volume is most appropriate to measure in	the measures. Work within one system of
real-world situations. Limited to fluid ounces,	measurement at a time.
cup, pint, quart, gallon, milliliter, and liter.	

Indicator	Indicator Insight
3.MGSR.3.1 Describe and draw right, acute,	Recognize angles as attributes of geometric
obtuse, and straight angles. Identify these	shapes formed when two rays share a
angle types in two-dimensional figures	common endpoint and create a space between
including triangles and quadrilaterals.	the rays. An acute angle has rays that are
	closer together. An obtuse angle has rays that
	are farther apart.
	Use everyday objects with a square corner,
	such as index cards, sticky notes, and
	notebook paper, as a reference or benchmark
	for a right angle. Use the straight edge of a
	sheet of paper as a benchmark for 180 degrees
	(straight angle). The expectation is not to
	measure angles with a protractor.
3.MGSR.3.2 Identify, describe, and draw	Clarify lines versus line segments in two-
points, lines, line segments, rays, intersecting	dimensional figures.
lines, perpendicular lines, and parallel lines.	
Identify these in two-dimensional figures.	

Numerical Reasoning

3.NR.1. Represent and compare whole numbers using relationships within the base ten	
number system.	

Indicator	Indicator Insight
3.NR.1.1 Read, write, and represent whole numbers through the thousands period (0 to 999,999) on a number line and in standard, base ten language, word, and equations in expanded form.	Use a scaled number line and have students position numbers. Base ten language refers to identifying the number of hundred thousands, ten thousands, thousands, hundreds, tens, and ones in a numeral. For example: 6 hundred thousands, 4 ten thousands, 7 thousands, 2 hundreds, 9 tens, 5 ones. Number lines should not be limited to starting at 0 and should include different ranges like 1000 - 5000.
3.NR.1.2 Compose and decompose 4-digit whole numbers in multiple ways using thousands, hundreds, tens, and ones.	Explain and demonstrate each composition or decomposition with the use of concrete objects, drawings, expressions, and equations.
3.NR.1.3 Compare two whole numbers up to 999,999 based on the place value of the digits using the symbols <i>is equal to</i> (=), <i>is less than</i> (<) or <i>is greater than</i> (>).	Compare the quantities using place value.
3.NR.1.4 Round whole numbers from 0 to 1,000 to the nearest 10 or 100.	Use both vertical and horizontal number lines, and place benchmark and midpoint numbers. Doing so allows mathematicians to conceptually understand to which multiple of 10 or multiple of 100 a number rounds. Use the convention that if there is a 5 in the ones or tens place the number is rounded to the next 10 or 100 depending on the unit requested. Avoid the use of rhymes and tricks for rounding.

Indicator	Indicator Insight
3.NR.2.1 Identify unit fractions as the quantity formed by one part when a whole is partitioned into 2, 3, 4, 6, or 8 equal-sized parts. Express each part as a unit fraction of the whole.	Provide opportunities to partition circles, equilateral triangles, squares, rectangles, hexagons, and octagons. Explore many ways to partition these shapes into equal-sized parts. This indicator is the foundation for unit fractions being represented by visual representations. A fraction $\frac{a}{b}$ is the quantity formed by a part of size $\frac{1}{b}$. For example, $\frac{3}{4}$ is formed by three one fourths.
 3.NR.2.2 Represent fractions from 0-1 using concrete, set, area, and linear models, and write them in standard form and word form. Limit denominators to 2, 3, 4, 6, and 8. 3.NR.2.3 Express whole numbers as fractions and identify fractions that are equivalent to 	This is students' first experience with concrete, set, area, and linear models. Linear models could include number lines and fraction tiles. In second grade, students partitioned circles, squares, and rectangles into halves and fourths. This is also the first time students have seen a fraction written as a number. Concrete and hands-on opportunities should be embedded throughout the fraction unit. Continue to build student understanding of quantity and size of unit fractions when representing fractions 0-1. Area and linear models should be used.
whole numbers. 3.NR.2.4 Compose fractions between the whole numbers 0 and 5 using unit fractions. Record the composition as a mixed number or fraction greater than one. Limit denominators to 2, 3, 4, 6, and 8.	Concrete, area, and linear models should be used. Represent and interpret the fraction greater than one in the form of $\frac{a}{b}$ when the unit fraction $\frac{1}{b}$ is added <i>a</i> times. Provide experiences counting by a unit fraction beyond one whole. Provide opportunities to build the model and name the value both as a fraction greater than one and a mixed number to notice the relationship between the two representations. Fractions greater than one have been referred to as improper fractions in the past.

3.NR.2. Represent and compare fractions in multiple ways using part-whole relationships.

Indicator	Indicator Insight
3.NR.2.5 Recognize two fractions are	Use concrete, area, and linear models.
equivalent based on the same size whole.	Use visual fraction models (area) of the same
Limit denominators to 2, 3, 4, 6, and 8, and	whole to identify equivalencies.
fractions should be limited to fractions	Corresponding number lines should represent
between 0 and 1.	equivalent fractions.
3.NR.2.6 Compare two fractions with the	Use concrete, area, and linear models.
same numerator or same denominator based	When referring to a fraction (numerator and
on the same size whole by reasoning about	denominator), avoid using language such as
their size. Use the symbols <i>is equal to (=), is</i>	"top number," "bottom number," and "out
<i>less than (<) or is greater than (>).</i> Limit	of."
denominators to 2, 3, 4, 6, and 8, and	Locate fractions on a number line to compare.
fractions should be limited to fractions	
between 0 and 1.	

Patterns, Algebra, and Functional Reasoning

3.PAFR.1. Use multiple representations to reason and solve problems involving operational
properties of whole numbers.

Indicator	Indicator Insight
3.PAFR.1.1 Use a strategy to compute sums	This indicator is about building conceptual
and differences up to 1,000.	understanding, not about practicing a standard
	algorithm.
	Strategies should include using concrete
	models, open number lines, or drawings and
	strategies based on place value, properties of
	operations, partial sums, or the inverse
	relationship between addition and
	subtraction. Provide opportunities to select a
	strategy that best fits the problem.

Indicator	Indicator Insight
3.PAFR.1.2 Multiply whole numbers (factors	The purpose of this indicator is to build
0-10) and divide whole numbers (divisors 1-	conceptual understanding of multiplication
10) using a model and write a corresponding	and division. To develop the relationship
equation.	between multiplication and division, these
-1	concepts should be taught at the same time.
	When modeling multiplication, present the
	related division fact. Connect the equation to
	the model.
	When modeling division, present the related
	multiplication fact. Connect the equation to
	the model.
	Representations should include concrete
	models, equal groups, arrays (rows x
	columns), and linear models.
	When reading a multiplication equation, the
	multiplication symbol should be read as
	"groups of." This reinforces the meaning of
	multiplication.
	When models are shown the convention is
	that 3 X 3 is three groups of three. It is also an
	array with three rows and three in each row.
	When using arrays, explore the <i>Commutative</i>
	<i>Property</i> for multiplication by rotating their model to discover that the modulation still the
	model to discover that the product is still the
	same even though the order of the factors
	changed. Using the <i>Commutative Property</i>
	allows students to learn two facts
	simultaneously.
	The Associative and Distributive Properties
	should be explored for multiplication and
	division. Ensure connections are made when
	decomposing arrays and concrete objects.
	Parentheses can be used as grouping symbols
	when recording the decomposition.
3.PAFR.1.3 Multiply two whole numbers	Decompose a factor or dividend/divisor into a
from 0 to 10 and divide using related facts	fact they do know. They may also use a
flexibly and accurately.	known fact to determine the unknown
	fact. Both strategies can be done efficiently
	and accurately.
	Using visuals will help students develop
	flexibility.
	Parentheses will be used as grouping
	symbols.
	State a division problem as a missing factor
	problem.

Indicator	Indicator Insight
3.PAFR.2.1 Determine the unknown whole	The unknown can be represented by an open
number in a multiplication or division real-	box, question mark, symbol, or a letter.
world situation relating three whole numbers	
when the unknown is a missing factor,	
product, dividend, divisor, or quotient.	
3.PAFR.2.2 Solve one-and two-step real-	Represent the problem situation using an
world problems using addition and	equation with a symbol for the unknown.
subtraction up to 1,000.	Provide contexts that include measurement
	situations with metric and customary units.
3.PAFR.2.3 Identify, create, and extend	Use ordinal numbers such as <i>first, second,</i>
numerical patterns to determine the next three	and so on to describe the number in the
terms in an addition or subtraction sequence.	sequence.
3.PAFR.2.4 Recognize that a whole number	Multiples can be determined by skip counting
is a multiple of each of its factors 1-10.	and should be limited to basic facts.
	Explore patterns in the multiplication table.

3.PAFR.2. Use reasoning to represent and solve algebraic and numerical situations.

Fourth Grade Math Standards

The standards are designed to provide students with knowledge and skills to solve problems using critically important skills for college and career readiness. The focus in fourth grade is concentrated within the strands of Numerical Reasoning; Patterns, Algebra, and Functional Reasoning; Data, Probability, and Statistical Reasoning; and Measurement, Geometry, and Spatial Reasoning.

For Numerical Reasoning, this grade will use relationships within the base ten number system to represent, compare, and order whole numbers, fractions, and decimals. A major focus for students in fourth grade will be to continue building a strong conceptual understanding of fractions and part-whole relationships, using models, reasoning strategies, and multiplication, to generate fraction equivalencies. Students will represent and compare fractions of tenths and hundredths as decimals and decimals of tenths and hundredths in multiple ways.

For Patterns, Algebra, and Functional Reasoning, fourth grade will use multiple representations to reason and solve problems involving operational properties of whole numbers and decimals. Students will use the standard algorithm for addition and subtraction, as well as a variety of previously taught strategies to accurately compute the sum or difference. Students will build on their understanding of multiplication and division concepts from third grade to operate with multi-digit problems in fourth grade. Students should decompose numbers and use multiple strategies to multiply up to four-digit numbers by one-digit numbers and two-digit by two-digit numbers. Using the inverse relationship between multiplication and division, connections should be made between these two operations. Furthermore, students should also decompose and use place value strategies to divide four-digit dividends by one-digit divisors. Students will also develop an understanding of operations involving fractions. Fractions should also be interpreted as a division scenario; where a whole or quantity is divided or partitioned into equal parts. Multiple opportunities with concrete and pictorial models should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations. Students will begin to operate with fractions with the same denominator and decimals (limited to tenths and hundredths). It is important that students understand fractions are equal parts of a whole. When adding or subtracting fractions, students should be able to visualize combining "like terms;" therefore, fractional parts must be of the same size whole. This is essential when connecting multiplying whole numbers times unit fractions. Students can make connections to repeated addition, when decomposing fractions and calculating products. Concrete models should be used when building these conceptual ideas before moving to abstract computations. Students should also use their knowledge of the four operations and number relationships to describe and extend numerical patterns following a given rule.

For Data, Probability, and Statistical Reasoning, this grade will be introduced to collecting and organizing numerical and categorical data based on observations, surveys, and experiments. Students will interpret whole number and fractional data represented in tables, scaled bar graphs, or dot plots by solving one-step problems. Probability is continued in fourth grade and builds upon their third-grade learning of representing simple events. In fourth grade, students will determine the likelihood of an event occurring. Students should be able to identify an event as

impossible, equally likely, or certain. They will connect benchmark values to connect the values of 0 to "impossible", 1 to "certain", and "equally likely" to $\frac{1}{2}$.

For Measurement, Geometry, and Spatial Reasoning, students in this grade will solve real-world problems involving the perimeter and area of rectangles. Students will be asked to identify the missing side length when evaluating a perimeter scenario. Fourth grade students will be introduced to finding the area of a rectangle and labeling their units with square units. Students will also be asked to estimate and measure using multiple different units. These standards include money and elapsed time. Students will also be estimating and measuring length to the nearest quarter inch and half centimeter to make connections between this and equivalent fractions. In fourth grade, students will classify polygons limited to triangles, quadrilaterals, pentagons, and hexagons in a hierarchy based on attributes. Students will be asked to classify triangles by their side lengths and angle measures. Students will investigate attributes to help classify a shape.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Make meaning of a problem and use
SOLVING	problems and persevere in	prior knowledge as an entry point to
	solving them strategically.	begin, plan, and choose a solution
		pathway.
		Look for another solution strategy
		when the solution approach tried does
		not make sense or does not result in a
		reasonable answer.
		Use concrete objects, pictures, or
		equations to explain conjectures and
		solve problems.
		Compare strategies to understand
		different approaches to solve relevant
		problems that involve multiple steps
		using operations with rational numbers.
		Use mathematical modeling to
		represent, analyze, and make
		predictions using data.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	justify a conjecture.
COMMUNICATION	contextually appropriate	Be specific with explanations by using
	mathematical language,	objects, pictures, and symbols when
	tools, and models.	describing the relationship between the
		operations.
		Use properties of operations to justify
		equivalence of fractions and different
		expressions.
		Provide manipulatives to encourage
		concrete understanding.
		Represent rational numbers in a variety
		of forms.
		Name and categorize shapes and use
		appropriate tools and units of
CONNECTIONS	MPS.C.1 Demonstrate a	measurement for the quantities given. Make connections applying number
CONTRECTIONS	deep and flexible	sense with real-world context.
	conceptual understanding	Describe fractions and decimals both as
	of mathematical ideas,	parts of other numbers and analyze
	operations, and	visual representations that support
	relationships while making	understanding of fractions.
	real-world connections.	Make sense of missing numbers in
		equations by using the relationships
		between addition, subtraction,
		multiplication, and division.
ANALYZE &	MPS.AJ.1 Use critical	Critique the arguments of others,
JUSTIFY	thinking skills to reason	decide whether they make sense, and
	both abstractly and	ask questions to clarify or revise the
	quantitatively.	arguments.
		Construct arguments using objects,
		concrete materials, drawings, diagrams, actions, and mathematical symbols.
		Make sense and confirm correct
		answers, even though solutions are not
		generalized or made formal.
		Reason inductively about data, making
		reasonable arguments that consider the
		context from which the data arose.
		Critique when making comparisons
		with fractions that refer to different
		wholes.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
STRUCTURE &	MPS.SP.1 Identify and	Recognize complex mathematical
PATTERNS	apply regularity in	objects, including multi-digit numbers
	repeated reasoning to make	and shapes, and situations as being
	generalizations.	composed of multiple parts.
		Apply basic addition and subtraction
		facts, simple multiplication facts, and
		knowledge of place value and related
		division facts to combine or partition
		whole numbers, find fractions of sets,
		shapes, and quantities, and recognize
		area and perimeter formulas.
		Create and continue spatial and number
		patterns based on addition, subtraction,
		or simple multiplication.

Data, Probability, and Statistical Reasoning

4.DPSR.1. Create questions, collect, and analyze data, and communicate interpretations through multiple representations.

Indicator	Indicator Insight
4.DPSR.1.1 Collect and organize numerical	Students need to be aware of which graph is
and categorical data based on observations,	the best fit for the given data.
investigations, surveys, and experiments	Numerical data can be represented using dot
using tables, scaled bar graphs, or dot plots.	plots and bar graphs.
Use titles and labels. Scales to include whole	Categorical data can be represented using bar
numbers, halves, and fourths.	graphs.
	Data collection can be integrated with science
	and social studies content. Connect
	measurement data to fractions.
4.DPSR.1.2 Solve one-step, real-world	Use the data collected to answer questions.
problems using whole number and fractional	
data represented in tables, scaled picture	
graphs, scaled bar graphs, or dot plots.	
Limited to like denominators of 2, 3, 4, 5, 6,	
8, and 10.	

4.DPSR.2. Represent the probability of simple events by conducting experiments to determine possible outcomes.

Indicator	Indicator Insight
4.DPSR.2.1 Determine the possible outcomes	A simple event could include but is not
of a simple event and record the probability as	limited to spinning a spinner, tossing a die,
certain, possible, or impossible.	drawing one card, or flipping a coin.

Measurement, Geometry, and Spatial Reasoning

Indicator	Indicator Insight
4.MGSR.1.1 Apply perimeter formulas for	Students are not expected to find the
rectangles to solve real-world situations	perimeter of a composite rectangle.
including finding the perimeter given the side	Provide opportunities for students to use
lengths and finding an unknown side length.	square tiles, grid paper, and/or dot paper.
4.MGSR.1.2 Apply area formulas for	Explore area as an attribute that involves the
rectangles to solve real-world situations. Use	covering of two-dimensional space.
square units to label area measurements.	Provide opportunities for students to use
	square tiles, grid paper, and/or dot paper.

4.MGSR.1. Solve area and perimeter problems in real-world and mathematical situations.

4.MGSR.2. Estimate and measure using units of length, liquid volume, weight, currency, and intervals of time.

Indicator	Indicator Insight
4.MGSR.2.1 Calculate the value of a	The expectation is not to solve using decimal
collection of coins and bills in real-world	operations or to determine how much change
situations to determine whether there is	is given.
enough money to make a purchase. Justify	
based on comparison of money amounts.	
4.MGSR.2.2 Solve real-world problems	Times can cross over the hour. Provide
involving addition and subtraction of time	exposure to solving time problems using a
intervals within 60 minutes to find elapsed	number line.
time, start time, or end time.	
4.MGSR.2.3 Measure length to the nearest	Connections should be made to equivalent
quarter inch.	fractions.
	Provide opportunities to see a ruler as a
	number line.
4.MGSR.2.4 Measure weight in customary	This is the first exposure to weight. Use
units, and metric units to the nearest whole	physical models including balances and
unit. Limit to oz, lb., g, and kg.	scales.
4.MGSR.2.5 Convert customary units of	Connect to multiplication and function
length, weight, and liquid volume from a	(input/output) tables, discuss reasonableness
larger unit to a smaller unit, given direct	based on size of units.
comparisons of the two measurements and/or	
the unit equivalencies within a single system	
of measurement. Limit to inches, feet, yards,	
pounds, ounces, cups, pints, quarts, and	
gallons when given unit equivalencies.	

Indicator	Indicator Insight
4.MGSR.3.1 Classify triangles according to	Attributes include number of sides and angles,
side length, isosceles, equilateral, scalene,	parallel and perpendicular line segments, and
and angle measure, acute, obtuse, right,	acute, right, and obtuse angles.
equiangular.	Use the term "congruent" to refer to sides of
	equal length.
4.MGSR.3.2 Classify quadrilaterals in a	Attributes include number of sides and angles,
hierarchy based on their shared attributes.	parallel and perpendicular line segments, and
	acute, right, and obtuse angles.

4.MGSR.3. Extend geometric reasoning to attributes of polygons.

Numerical Reasoning

4.NR.1. Represent and compare whole numbers using relationships within the base ten number system.

Indicboator	Indicator Insight
4.NR.1.1 Read and write whole numbers through the millions period (0 to 999,999,999) in word, standard, and equations in expanded form.	Provide experiences to see the sequence of three digits separated by commas is referred to as a "period." Emphasize where commas should be placed in a number up to 999,999,999.
4.NR.1.2 Estimate sums, differences, products, and quotients of multi-digit whole numbers, using rounding and place value to determine the reasonableness of real-world problem solutions. Write an equation for the estimate.	Round to solve. Use strategies including but not limited to front-end estimation. Write an equation for an estimation and compare it to the answer to determine if the answer is reasonable. The magnitude of numbers used for this indicator should be consistent with the indicators for the four operations. Consider reasonableness of solutions in real- world situations: over-rounding or under- rounding, situations of interpreting rounding.
4.NR.1.3 Order whole numbers within 999,999 (no more than 3) in ascending or descending order and record the comparison(s) using the symbols <i>is less than</i> (<), <i>and/or is greater than</i> (>).	Use scaled number lines with limited range for positioning numbers.

4.NR.2. Represent and compare fractions in multiple ways using part-whole relationships.

Indicator	Indicator Insight
4.NR.2.1 Represent fractions with	Manipulatives including decimal grids
denominators of 10 and 100 in words,	(10x10) and base ten blocks should be used.
models, and decimal notations.	Connect money to decimals.

Indicator	Indicator Insight
4.NR.2.2 Compare decimal numbers to the hundredths using the benchmarks 0, 0.5, 1.0, concrete area, and linear models. Use the symbols <i>is equal to</i> (=), <i>is less than</i> (<), <i>and/or is greater than</i> (>).	Compare whole numbers to decimals and decimals to decimals using base ten materials and number lines. Provide experiences placing decimal numbers on a number line. Number lines should be scaled and include a limited range. Use reasoning strategies to sort the decimals into categories of less than or greater than $\frac{1}{2}$. Have students explain their thinking for the
4.NR.2.3 Generate equivalent fractions, including fractions greater than one, using multiple representations. Limit fractions to denominators of 2, 3, 4, 5, 6, 8, 10, 12, 20, 25, 50, and 100.	placements. Multiple representations should include concrete, area, and linear models. Explain the <i>Identity Property of</i> <i>Multiplication</i> as it relates to equivalent fractions $\frac{a \times n}{b \times n}$, where $\frac{n}{n} = 1$ Encourage students to find the patterns of the numerators and denominators of equivalent fractions. They should discover the patterns through exploration rather than being told. Provide opportunities for students to fold and shade an area. Students continue to fold, noticing the amount of area shaded does not change.
4.NR.2.4 Represent the composition and decomposition of fractions with the same denominator, including mixed numbers and fractions greater than 1, using multiple representations. Limit fractions to denominators of 2, 3, 4, 5, 6, 8, 10, 12, 20, 25, 50, and 100.	This connects to the indicator below to help students understand the conversion of mixed numbers and improper fractions. Models play a vital role in building this understanding.
4.NR.2.5 Explain and demonstrate how a mixed number is equivalent to a fraction greater than one and how a fraction greater than one is equivalent to a mixed number. Limit fractions to denominators of 2, 3, 4, 5, 6, 8, 10, 12, 20, 25, 50, and 100.	Use models and reasoning strategies to teach concepts. Provide experiences to connect fractions to division. The expectation in this standard is not for students to formally convert between a mixed number and a fraction greater than one. Both should be represented using visual representations. Improper fractions should be referred to as fractions greater than one.

Indicator	Indicator Insight
4.NR.2.6 Compare fractions and mixed	Use reasoning strategies to sort the fractions
numbers with like and unlike denominators	and into categories of less than or greater
applying benchmark fractions such as $0, \frac{1}{2}$,	than $\frac{1}{2}$. Have students explain their thinking
and 1 using the symbols is equal to $(=)$, is	for the placements.
<i>less than (<), or is greater than (>).</i> Fractions	Clarify using equivalence to scale fractions up
limited to denominators of 2, 3, 4, 5, 6, 8, 10,	or down to compare.
12, 20, 25, 50, and 100.	

Patterns, Algebra, and Functional Reasoning

4.PAFR.1. Use multiple representations to reason and solve problems involving operational properties of whole numbers and decimals.

Indicator	Indicator Insight
4.PAFR.1.1 Use a strategy to accurately	Strategies should consist of multiple
compute sums and differences of whole	approaches including but not limited to a
numbers up to 100,000 and justify the sum or	standard algorithm.
difference.	Provide opportunities to select and use the
	strategy that is most efficient.
4.PAFR.1.2 Compute the product of a one-	Use concrete materials, pictorial models, and
digit whole number by a multiple of 10 (from	strategies. Avoid teaching students to count
10 to 90) and 100 (from 100 to 900) based on	the zeros. Provide experiences so students
place value and properties of operations.	discover why zeros are added. This place
	value understanding is foundational when
	multiplying larger numbers.
4.PAFR.1.3 Decompose numbers by the value	Strategies include but are not limited to partial
of each digit to multiply whole numbers up to	products, equations, open arrays, area models,
four digits by a one-digit number and two	and/or properties of the operations.
two-digit whole numbers.	Distributive Property should continue to be
	used as a strategy when multiplying and
	dividing. Provide experiences to see to how
	these strategies connect to one another.
4.PAFR.1.4 Use a strategy to divide up to a	Strategies include but are not limited to partial
four-digit dividend by a one-digit divisor,	quotients, repeated subtraction, open arrays,
with and without remainders. Justify the	area models and/or properties of operations.
calculation.	Distributive Property should continue to be
	used as a strategy when multiplying and
	dividing. Provide experiences to see to how
	these strategies connect to one another. Use
	multiplication to check their answer. Provide
	opportunities to explore relationships between
	the dividend, divisor, and remainder. This
	may lead to the discovery of the divisibility
	rules. Teach divisibility rules in context as
	you teach division by single-digit divisors.

Indicator	Indicator Insight
4.PAFR.2.1 Use a strategy to accurately	Students are not required to rename fractions
compute sums and differences of fractions	in lowest terms/simplest form. Problems
with like denominators and justify the	should be posed in context and without
reasonableness of the answer. Limit	context.
denominators to 2, 3, 4, 5, 6, 8, 10, 12, 25,	Representations should include concrete, area,
and 100.	linear models, and/or equations.
4.PAFR.2.2 Use fraction and decimal	Improper fractions should be referred to as
equivalencies to add and subtract tenths and	fractions greater than one.
hundredths, to include mixed numbers and	
fractions greater than one.	
4.PAFR.2.3 Represent and compute the	Understand this as combining equal groups of
product of a whole number times a unit	the unit fraction. Representations should
fraction. Limit denominators to 2, 3, 4, 5, 6, 8,	include concrete area, linear models, and/or
10, 12, 25, and 100.	equations.
	Students can be exposed to real-world
	situations for application purposes.
4.PAFR.2.4 Interpret a fraction as an equal	Representations should include concrete, area,
sharing division situation, where a quantity	and/or linear models.
(the numerator) is divided into equal parts	Use partitive division to share fractional
(the denominator) to include real-world	amounts evenly to visualize the relationship
problems.	between fractions and division.

4.PAFR.2. Use multiple representations to reason and solve problems involving operational properties of fractions.

4.PAFR.3. Use reasoning to represent and solve algebraic and numerical situations.

Indicator	Indicator Insight
4.PAFR.3.1 Find all factor pairs for a whole	Identify, create, and extend patterns to
number in the range 1-50. Determine whether	determine the next three terms in a numerical
the whole number is prime or composite.	sequence. Sequences should be limited to the
	use of a single operation.
4.PAFR.3.2 Describe and extend a numerical	Function tables and input-output tables should
pattern which follows a rule, using function	be used interchangeably. In middle school,
tables and real-world situations.	students will need to know the term "function
	table."
	In addition, have students find the rule when
	given the input and output.
4.PAFR.3.3 Solve real-world problems	Problems should include unknown product,
involving multiplicative comparison	size of group unknown, and number of groups
situations and write equations to represent the	unknown.
problem using a variable for the unknown.	Model using concrete materials or bar
	diagrams.

Indicator	Indicator Insight
4.PAFR.3.4 Solve two-step, real-world	Provide context to include measurement
problems using the four operations involving	situations with metric and customary units.
whole number answers. Represent the	Use a letter to represent the unknown.
problem using an equation with a variable as	
the unknown in any position.	

Fifth Grade Math Standards

The standards are designed to provide students with knowledge and skills to solve problems using critically important skills for college and career readiness. The focus in fifth grade is concentrated within the strands of Numerical Reasoning; Patterns, Algebra, and Functional Reasoning; Data, Probability, and Statistical Reasoning; and Measurement, Geometry, and Spatial Reasoning.

For Numerical Reasoning, this grade will represent and compare multi-digit numbers with decimals using relationships within the base ten number system and models. A major focus for students in fifth grade will include building a strong conceptual foundation of understanding decimal values. They will represent the equivalent forms of fractions as decimals and decimals as fractions as a method to compare numbers using reasoning strategies and number lines.

For Patterns, Algebra, and Functional Reasoning, fifth grade will use multiple representations to reason and solve problems involving operational properties of decimals, fractions, and whole numbers. Students will continue using a variety of strategies for addition, subtraction, multiplication, and division, which were previously introduced in earlier grades. A major focus for students in fifth grade will include solidifying their understanding of multi-digit whole number operations to include the use of algorithms to solve problems. Leaving fifth grade with knowledge of the standard algorithm for addition, subtraction, multiplication, and division will lead to the ability to operate fluently with decimals and fractions in middle school. Students will also develop an understanding of operations involving fractions and decimals. Multiple opportunities with concrete and pictorial models should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations. In this grade, students will gain understanding of how factors and multiples can help to determine the common denominator and simplify fractions. Students will be introduced to graphing ordered pairs within the first quadrant of a coordinate plane and they will be formally introduced to functions. It is important for students to be able to identify the rule of a function table and to extend the patterns in the table as well. In fifth grade, students will begin to use grouping symbols and learn how to evaluate numerical expressions.

For Data, Probability, and Statistical Reasoning, this grade will be introduced to finding the range and mode using data. Students will solve one-step problems using data represented in tables, line graphs, scaled bar graphs, or dot plots. In this grade, students will make predictions or draw conclusions by analyzing categorical and numerical data in graphical displays. Probability is continued to be taught in fifth grade as students will represent the likelihood of a simple event occurring in the form of a fraction.

For Measurement, Geometry, and Spatial Reasoning, fifth grade will solve problems involving area and perimeter of composite rectangles involving whole and fractional numbers with known side lengths. Students will be introduced to the concept of volume of a right rectangular prism. In this grade, students will solve real-world problems requiring them to convert between measurements across different systems. Students will continue to extend their ability to estimate and measure lengths of objects. In fifth grade, students will be formally introduced to the coordinate system and how this applies when plotting and labeling ordered pairs in the first

quadrant. Multiple opportunities should be embedded in this strand and students should be able to apply the concepts to mathematical and real-world situations.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Make meaning of a problem and use
SOLVING	problems and persevere in	prior knowledge as an entry point to
	solving them strategically.	begin, plan, and choose a solution
		pathway.
		Look for another solution strategy
		when the solution approach tried does
		not make sense or does not result in a
		reasonable answer.
		Use concrete objects, pictures, or
		equations to explain conjectures and
		solve problems.
		Compare strategies to understand
		different approaches to solve relevant
		problems that involve multiple steps
		using operations with rational numbers.
		Use mathematical modeling to represent, analyze, and make
		predictions using data.
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	justify a conjecture.
COMMUNICATION	contextually appropriate	Be specific with explanations by using
	mathematical language,	objects, pictures, and symbols when
	tools, and models.	describing the relationship between the
	,	operations.
		Use properties of operations to justify
		equivalence of fractions and different
		expressions.
		Provide manipulatives to encourage
		concrete understanding.
		Represent rational numbers in a variety
		of forms.
		Name and categorize shapes and use
		appropriate tools and units of
		measurement for the quantities given.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Make connections applying number sense with real-world context. Describe fractions and decimals both as parts of other numbers and analyze visual representations that support understanding of fractions. Make sense of missing numbers in equations by using the relationships between addition, subtraction, multiplication, and division.
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Critique the arguments of others, decide whether they make sense, and ask questions to clarify or revise the arguments. Construct arguments using objects, concrete materials, drawings, diagrams, actions, and mathematical symbols. Make sense and confirm correct answers, even though solutions are not generalized or made formal. Reason inductively about data, making reasonable arguments that consider the context from which the data arose. Critique when making comparisons with fractions that refer to different wholes.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Recognize complex mathematical objects, including multi-digit numbers and shapes, and situations as being composed of multiple parts. Apply basic addition and subtraction facts, simple multiplication facts, and knowledge of place value and related division facts to combine or partition whole numbers, find fractions of sets, shapes, and quantities, and recognize area and perimeter formulas. Create and continue spatial and number patterns based on addition, subtraction, or simple multiplication.

Data, Probability, and Statistical Reasoning

representations.	
Indicator	Indicator Insight
5.DPSR.1.1 Describe data by determining the	Data should be given in context.
range and mode, including whole numbers,	In middle school, the terms for maximum and
fractional data, and decimal data. Limit	minimum will be referred to as upper extreme
fractions to denominators of 2, 3, 4, 5, 6, 8,	and lower extreme.
and 10, and limit decimals to decimals	
through the thousandths place.	
5.DPSR.1.2 Solve two-step, real-world	Students should be familiar with coordinate
problems using whole number and fractional	graphs prior to the introduction of line graphs.
data represented in tables, line graphs, scaled	Students could be expected to use any of the
bar graphs, or dot plots. Limit fractions to	four operations.
denominators of 2, 3, 4, 5, 6, 8, 10, 12, 20, 25,	
50, and 100.	
5.DPSR.1.3 Analyze categorical and	The expectation is not to create circle graphs
numerical data in graphical displays to make	nor include percentages.
predictions or draw conclusions. Limit	
displays to tables, bar graphs, dot plots, line	
graphs, and circle graphs with scales of whole	
numbers, halves, fourths, and eighths.	

5.DPSR.1. Create questions, collect, and analyze data, and communicate through multiple representations.

5.DPSR.2. Represent the probability of simple events and determine possible outcomes.

Indicator	Indicator Insight
5.DPSR.2.1 Represent the probability of a	A simple event could include but is not
simple event as 0, a fraction, or 1. Limit	limited to spinning a spinner, tossing a die,
fractions to denominators of 2, 3, 4, 5, 6, 8,	drawing one card, or flipping a coin.
10, 20, and 25.	

Measurement, Geometry, and Spatial Reasoning

5.MGSR.1. Solve area, perimeter, and volume problems in real-world and mathematical situations.

Indicator	Indicator Insight
5.MGSR.1.1 Solve problems involving area	Use concrete materials or grid paper with a
and perimeter of composite figures by	shape drawn on it.
decomposing with rectangles.	Decompose rectilinear figures into smaller
	rectangles to find the area of each and then
	add them.
	Use square units to label area measurements.

Indicator	Indicator Insight
5.MGSR.1.2 Estimate and measure the volume of a right rectangular prism with whole-number side lengths by filling it with unit cubes.	Indicator InsightUse containers that can be accurately measured with the unit cubes you are using (so inch cubes with a rectangular prism that measures in precise inch dimensions).Provide opportunities to recognize volume as an attribute of three-dimensional shapes that involves filling a space.Composite rectangular prisms are excluded. Use cubic units to label volume
	measurements.

5.MGSR.2. Convert within a given measurement system and measure length.

Indicator	Indicator Insight
5.MGSR.2.1 Given the unit equivalencies, convert within a single system of measurement from larger units to smaller units and smaller units to larger units for length, weight, liquid volume, and time. Use these conversions in solving real-world problems. Limit units to inches, feet, yards, pounds, ounces, cups, pints, quarts, gallons, seconds, minutes, hours, milli-, centi-, base unit, and kilo	Identify patterns and make generalizations about the larger the unit the smaller the measure and the smaller the unit the larger the measure. Provide experiences performing more than one conversion to obtain the desired unit. Connect to multiplication and division units and for metric conversions connect to place value understanding of 10 times and $\frac{1}{10}$.
5.MGSR.2.2 Estimate and measure lengths to the nearest eighth of an inch or nearest millimeter.	Connect to equivalent fractions. Connect the ruler to the number line. Provide students opportunities in measuring to the nearest $\frac{1}{8}$ of inch and millimeter both using a ruler and when given images of real-world objects aligned with a ruler.

5.MGSR.3. Represent real-world and mathematical problems by plotting ordered pairs and explain coordinate values of points in the first quadrant of the coordinate plane.

Indicator	Indicator Insight
5.MGSR.3.1 Identify the origin, <i>x</i> -axis, and <i>y</i> -	This is the first time graphing in the
axis in the coordinate system. Write, plot and	coordinate plane is introduced. Explain how
label ordered pairs, including values in a	the coordinates relate. Plot the point as the
function table, in the first quadrant of the	distance from the origin on each axis. In a
coordinate plane.	function table, note that the input is the <i>x</i> -
	coordinate, and the output is the <i>y</i> -coordinate.
	Function tables are also called input/output
	tables. Use these terms interchangeably. In
	middle school, students will use the term
	function table.

Indicator	Indicator Insight
5.MGSR.3.2 Represent mathematical and	Provide opportunities to find a point on the
real-world situations by graphing, labeling,	coordinate plane. It is important for students
and interpreting points in the first quadrant of	to examine the relationship between the <i>x</i> -axis
the coordinate plane.	and the <i>y</i> -axis.
	Real-world situations could include map
	situations.

Numerical Reasoning

5.NR.1. Represent and compare positive rational numbers using relationships within the base ten number system.

Indicator	Indicator Insight
5.NR.1.1 Read, write, and represent multi-	Provide opportunities to explore with concrete
digit numbers from 0 to 999 with decimals to	objects as this is students' first exposure to
the thousandths place. Use pictorial, word,	thousandths. Base ten blocks and decimal
standard, or expanded form with fraction or	grids can be used.
decimal notation.	
5.NR.1.2 Explain how the value of a digit in a	Recognize that a digit to the left of another
multi-digit number changes if the digit moves	digit is ten times more, and a digit to the right
one or more places to the left or right in the	of a digit is one tenth of the amount.
base ten system. Include decimals to the	Make the connection between decimal
thousandths place.	notation and place value.
5.NR.1.3 Round decimal numbers up to 999	The same number can be used to demonstrate
with decimals to the thousandths place to the	what happens when it is rounded to various
nearest hundredth, tenth, or whole number.	places.
	Use benchmark numbers and midpoint on a
	vertical or horizontal number line and plot the
	given number to visualize which benchmark
	the number is closest to.
5.NR.1.4 Use patterns to explain the	Focus on place value patterns within a place
exponents when multiplying and dividing by	value chart rather than the decimal moving.
powers of 10, not to exceed the thousandths	
place.	

S. (1.2.) Represent and compare matching in multiple ways.	
Indicator	Indicator Insight
5.NR.2.1 Compare fractions and mixed	Students should be able to apply these
numbers with like and unlike denominators of	comparisons in real-world situations such as
2, 3, 4, 5, 6, 8, 10, 12, 20, 25, and 100 using	recipes and measurement.
equivalence to create a common denominator.	
Use the symbols $<$, $>$, $or =$ to record the	
comparison.	

Patterns, Algebra, and Functional Reasoning

Indicator	Indicator Insight
 5.PAFR.1.1 Use a strategy to compute the product of a two-or-three-digit factor times a two-digit factor to include real-world problems. 5.PAFR.1.2 Use a strategy to compute the quotient of a multi-digit whole number dividend by a two-digit whole number divisor, with and without remainders, to include real-world problems. Limit the dividend to four digits. 	Strategies should include a standardalgorithm. Connect a standard algorithm tothe partial products algorithm as well as thearea model for multiplication. DistributiveProperty should continue to be used as astrategy when multiplying.Strategies should include a standardalgorithm. Connect a standard algorithm tothe partial quotients algorithm as well as openarrays and repeated subtraction. DistributiveProperty should continue to be used as astrategy when dividing.Students should interpret the meaning of theremainder in context. Students shoulddetermine whether:• the remainder should be ignored,• one should be added to the quotient, or• the remainder should be written as afraction.
 5.PAFR.1.3 Use a strategy to compute sums and differences of decimal numbers to the hundredths. 5.PAFR.1.4 Use a strategy to multiply a one-digit whole number by a decimal to the hundredths and divide a decimal to the hundredths (dividend) by a one-digit whole number (divisor). Justify the calculation. 	Strategies should include a standard algorithm. Include using money and making change. Strategies should include but are not limited to concrete models and decimal grids. Justify calculations by using strategies based on place value, the properties of operations, or the inverse relationship between multiplication and division. Provide context with money.

5.PAFR.1. Use multiple representations to reason and solve problems involving operational properties of whole numbers and decimals.

Indicator	Indicator Insight
5.PAFR.2.1 Use a strategy to compute sums	Provide exposure to the following situations:
and differences of fractions and mixed	fraction-fraction, mixed number-fraction, and
numbers with unlike denominators and justify	mixed number-mixed number.
the sum or difference to include real-world	The use of equivalent fractions should be the
problems. Limit denominators to 2, 3, 4, 5, 6,	foundation of finding common denominators.
8, 10, 12, 20,25, 50, and 100.	Introduce students to least common multiple
	(LCM).
	Provide opportunities to use pictorial and
	concrete models to add and subtract fractions.
5.PAFR.2.2 Use a strategy to multiply a	Fractions should include standard fractions,
fraction by a fraction or a fraction by a whole	mixed numbers, and fractions greater than 1.
to include real-world problems. Limit	Initially, models should be represented before
denominators to 2, 3, 4, 5, 6, 8, 10, and 12.	moving to the procedure of multiplying
	fractions.
5.PAFR.2.3 Interpret and represent division	Strategies should include concrete, area,
of a whole number dividend and a unit	linear models, and/or equations.
fraction divisor and a unit fraction dividend	Avoid the use of "keep, change, flip" in
and a whole number divisor and apply to real-	presenting this indicator.
world problems. Limit denominators to 2, 3,	
4, 5, 6, 8, 10, and 12.	

5.PAFR.2. Use multiple representations to reason and solve problems involving operational properties of fractions.

5.PAFR.3. Use reasoning to represent and solve algebraic and numerical situations.

Indicator	Indicator Insight
5.PAFR.3.1 Determine the least common	Use the limited denominators listed in the
multiple (LCM) to find a common	indicator to create a common denominator.
denominator. Limit denominators to 2, 3, 4, 5,	Avoid multiplying the two denominators
6, 8, 10, 12, 20, 25, 50, and 100.	together to determine finding the common
	denominator as this does not always produce
	the least common denominator. For example,
	if given $\frac{2}{5} + \frac{3}{10}$ the least common denominator
	is not 50.
5.PAFR.3.2 Determine the greatest common	The standard form of a fraction is the simplest
factor (GCF) of two numbers both less than or	form.
equal to 50 to simplify a fraction into its	The terms <i>prime</i> and <i>composite</i> were
standard form.	introduced in fourth grade when students
	found factor pairs of whole numbers 1-50.
5.PAFR.3.3 Identify a rule that can describe	Function tables are also called input/output
the pattern from the data of a function table	tables. Use these terms interchangeably. In
and write it as an expression.	middle school, students will use the term
	function table.

Indicator	Indicator Insight
5.PAFR.3.4 Translate a two-step real-world	Avoid teaching PEMDAS as the intent of this
situation into a numerical expression using	indicator is on students making sense of the
parentheses as grouping symbols and evaluate	problem. They must understand that there is
the expression.	an agreed-to order for solving operations.
	Expressions should not require the
	understanding of Order of Operations.
	Students should understand to operate within
	the parentheses as a first step.

Sixth Grade Math Standards

The standards for Middle School continue the work started in elementary in these four strands: Data, Probability, and Statistical Reasoning; Measurement, Geometry, and Spatial Reasoning; Numerical Reasoning; and Patterns, Algebra, and Functional Reasoning. Woven throughout all four strands are concepts building on students' understanding with problem solving to provide context to the problems they are solving which will foster critical thinking and collaboration skills.

In the Numerical Reasoning strand, sixth graders will utilize multiple representations of real numbers to translate, simplify, and solve problems using mathematical and real-world applications. Students will use their prior knowledge of whole numbers to expand into operations with integers and positive rational numbers. They will deepen their understanding of fractions, decimals, and percentages through ordering, sorting, and finding absolute value. The emphasis will be on understanding negative numbers.

In Patterns, Algebra, and Functional Reasoning, sixth graders will expand their understanding of algebraic concepts, being introduced to functions. They will learn the correct terminology related to algebraic expressions, equations, and inequalities, along with distinguishing between expressions and equations, and equations and inequalities. One-step simple equations and inequalities will be used to solve a variety of problems using positive rational numbers. Students will also be introduced to ratios and rates, and how to use them in real-world situations.

In the Data, Probability, and Statistical Reasoning strand, sixth graders will analyze data sets to identify their statistical elements. They will create graphs and plots to represent data sets, along with interpreting measures of center and spread for those data sets. They will be introduced to probability with simple and complementary events and learn that probabilities can be written as a fraction, decimal, or percent.

In Measurement, Geometry, and Spatial Reasoning, sixth graders will use the characteristics of two-dimensional and three-dimensional shapes learned in earlier grades to help them calculate area, surface area, and volume using models, nets, and formulas. Students will use angle measures to find and identify complementary or supplementary angles, along with exploring angles using a protractor. They will be introduced to all four quadrants of the coordinate plane and begin plotting and graphing ordered pairs in all four quadrants, to include graphing lines and polygons.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Interpret the meaning of a problem by
		imagining the situation, considering
		multiple entry points, making a plan,
		and choosing a solution pathway.
		Demonstrate flexibility in approaching
		the problem. When the solution
		pathway does not lead to a solution,
		look for another way.
		Recognize that multiple
		representations, including concrete
		models, drawings, expressions,
		equations, verbal descriptions, tables,
		diagrams, and graphs, are related to
		each other and can help them solve the
		problem.
		Compare other students' approaches to
		solving the problem and understand
		there can be multiple ways to solve a
		problem.
		To find a correct solution, consider
		simpler forms of the original problem.
		Students should continually ask
		themselves if a solution is reasonable.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	explain or justify a conjecture.
COMMUNICATION	contextually appropriate	Solve problems collaboratively.
	mathematical language,	Collaborate with others by posing
	tools, and models.	clarifying questions that help deepen
		overall understanding of the concept.
		Be specific with explanations by using
		objects, drawings, pictures, and
		symbolic representations.
		Use a variety of forms to present results
		to an audience.
		Use properties of operations to justify
		the equivalence of expressions.
		Make decisions about which tools are
		necessary to use, or not use, in specific
		situations.
		Demonstrate proficiency in choosing
		technology tools that will aid in
		understanding a concept or formulating
		a solution to the problem.
		Attend to precision when checking
		work and labeling measurements, along with making revisions as needed.
CONNECTIONS	MPS.C.1 Demonstrate a	Make connections applying number
CONTRECTIONS	deep and flexible	sense with real-world contexts.
	conceptual understanding	Understand that fractions, decimals,
	of mathematical ideas,	and percentages are rational numbers.
	operations, and	Make sense of missing numbers in
	relationships while making	equations by using the relationships
	real-world connections.	among addition, subtraction,
		multiplication, and division.
		Understand that a complex problem is
		made up of many smaller problems
		needing to be solved to get to a "final
		solution."
		Generate mathematical problems using
		the surrounding world.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
STANDARD AREA ANALYZE & JUSTIFY	INDICATOR MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Compare arguments, determine if the logic used is reasonable, and be able to explain any errors or flaws found. Construct written and verbal arguments using objects, numbers, drawings, diagrams, mathematical activities, and mathematical symbols. Make sense of both symbols and numbers. Reason inductively about data, making reasonable arguments that consider the context from which the data arose. As new evidence is presented, review
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	position and revise as necessary.Recognize complex mathematicalobjects and situations as beingcomposed of multiple parts.Apply a variety of strategies to findingsolutions for a problem in context.Notice patterns and structure inrepeated calculations and look forgeneralizations, general methods, andshortcuts.Check for reasonableness and neededadjustments in strategies while solvingproblems.

Data, Probability, and Statistical Reasoning

6.DPSR.1. Analyze data sets to identify their statistical elements.

Indicator	Indicator Insight
6.DPSR.1.1 Identify the sample size for a	This is the first introduction to the term
numerical set of data in mathematical and	sample size.
real-world situations.	
6.DPSR.1.2 Create box plots to represent	This is the first exposure to box plots. Teach
numerical data sets in mathematical and real-	using data displays, not just numerical sets.
world situations.	
6.DPSR.1.3 Use the shape of the graph to	This indicator introduces spread and center.
determine whether median or mode best	Shape includes right skew, left skew,
describes the data set.	symmetric, uniform, bimodal (two modes),
	and outliers.
	This is the first introduction to median.
6.DPSR.1.4 Calculate and interpret the	Compare differences between median and
median, mode, range, interquartile range in	mode. Include positive rational numbers in
mathematical and real-world situations.	the data sets.

Indicator	Indicator Insight
6.DPSR.2.1 Given the probability of a	Likelihood is defined as: certain (probability
random event, expressed as a number from 0	of 1), impossible (probability of 0), likely,
to 1, state the likelihood of the event	equally probable, or unlikely. Probabilities
occurring.	closer to 1 are likely, and those closer to 0 are
	unlikely events.
	Probability can be written as a fraction,
	decimal, or percent.
	Likelihood is introduced in third grade.
6.DPSR.2.2 Find the probability of simple	In grade 5, finding probabilities of simple
events in mathematical and real-world	events (as fractions only) are introduced.
situations. Fractions limited to denominators	Probability can be written as a fraction,
of 2, 4, 5, 8, 10, 25, 50, and 100.	decimal, or percent.
6.DPSR.2.3 Given the probability of an event,	The probabilities of complementary events
identify and calculate the complement of that	add up to 1.
event.	

6.DPSR.2. Calculate and interpret probability.

Measurement, Geometry, and Spatial Reasoning

Indicator	Indicator Insight
6.MGSR.1.1 Find the area of a triangle, square, rectangle, parallelogram, and trapezoid.	Use composition and decomposition of the shapes as well as applications of properties and formulas. Find actual measurements using rulers to continue the practice from elementary grades.
6.MGSR.1.2 Create nets to represent three- dimensional shapes.	Include nets of both prisms and pyramids.
 6.MGSR.1.3 Calculate the surface area of rectangular prisms, right triangular prisms, and right pyramids using two-dimensional nets. 6.MGSR.1.4 Find the area of composite figures by decomposing them into triangles and rectangles to solve mathematical and real-world problems. 	Connect through patterns to the formula for surface area. Find actual measurements of some nets using rulers to continue the practice from elementary. In fifth grade, students find perimeter and area of composite figures composed of rectangles.
6.MGSR.1.5 Calculate the volume of a right rectangular prism using the formula (V = Bh) in mathematical and real-world situations.	In fifth grade, students explore volume conceptually by filling right rectangular prisms with unit cubes and multiplying the number of unit cubes in the lowest layer (area of the base) by the number of layers of cubes (height of the prism). In sixth grade, students are deepening and applying their understanding of volume.

6.MGSR.1. Determine the measurements of geometric figures.

Indicator	Indicator Insight
6.MGSR.2.1 Determine if two angles are	Relate supplementary angles to the measure
complementary or supplementary.	of straight angles and the measure of
	complementary angles to right angles. This is
	students' first exposure to the terms
	complementary and supplementary.
6.MGSR.2.2 Determine the measure of angles	Include straight angles when addressing this
using a protractor.	indicator. This is students' first time using a
	protractor.

6.MGSR.2. Determine angle relationships.

6.MGSR.3. Graph on the coordinate plane.

Indicator	Indicator Insight
6.MGSR.3.1 Plot ordered pairs in all four	This is the students' first introduction to all
quadrants and identify points on a graph by	four quadrants. The first quadrant of the
writing ordered pairs.	coordinate plane was introduced in fifth
	grade.
	Given a point on the graph, students need to
	be able to identify the ordered pair as well as
	graph the ordered pairs.
6.MGSR.3.2 Graph a polygon on a coordinate	Include the use of a table (horizontal and
plane given the coordinates of the vertices.	vertical) when graphing points. (x, y).

Numerical Reasoning

6.NR.1. Translate among multiple representations of rational numbers.

Indicator	Indicator Insight
6.NR.1.1 Convert rational numbers into	The expectation of this indicator excludes the
equivalent forms among terminating	conversion of repeating decimals to fractions.
decimals, fractions (including mixed	This indicator is students' first introduction to
numbers), and percentages. Limit fractions to	percentages.
denominators of 2, 4, 5, 8, 10, 20, 25, 50, 100,	
and 200.	

6.NR.2. Utilize rational numbers in mathematical and real-world situations.

Indicator	Indicator Insight
6.NR.2.1 Compare two rational numbers and	Include absolute value, which is introduced in
write statements using the symbols is equal to	6.NR.2.4. Comparisons should include real-
(=), is not equal to (\neq), is less than (<),	world situations.
and/or is greater than (>) in mathematical	
and real-world situations.	
6.NR.2.2 Sort a set of rational numbers in	Rational numbers should include absolute
ascending and/or descending order in	value.
mathematical and real-world situations. Limit	
sets to no more than 5 numbers.	

Indicator	Indicator Insight
6.NR.2.3 Represent quantities with integers in	This is an introduction to the understanding of
real-world situations and explain the meaning	negative numbers and zero.
of zero.	Explain how integers and rational numbers fit
	into the Real Number System.
	Model integers using concrete materials,
	drawings, number lines (horizontal and
	vertical), symbols, and words.
6.NR.2.4 Identify and compare the opposite	Use horizontal and vertical number lines to
value and absolute value of positive and	explain concepts of opposite and absolute
negative rational numbers.	value.
	Represent opposite and absolute value
	numbers with real-world situations, such as
	temperature, financial literacy, and distances.
	This is the first introduction to absolute value.

Patterns, Algebra, and Functional Reasoning

6.PAFR.1. Use tables, graphs, verbal descriptions, or equations to represent a function.

Indicator	Indicator Insight
6.PAFR.1.1 Use tables, graphs, verbal	This is an introduction to <i>functions</i> and the
descriptions, and equations to represent the	relationship between independent (input) and
relationship between independent and	dependent (output) variables.
dependent variables of functions.	Fifth grade introduces function tables as input
	output tables.
6.PAFR.1.2 Identify the independent and	Connect independent variables to input and
dependent variable of a function in	dependent variables to output (from
mathematical and real-world situations.	input/output tables).

6.PAFR.2. Write, simplify, and evaluate algebraic expressions; write and solve algebraic equations and inequalities.

Indicator	Indicator Insight
6.PAFR.2.1 Identify parts of an algebraic	This indicator is the first introduction to terms
expression using the mathematical terms <i>sum</i> ,	associated with algebraic expressions.
difference, term, variable, product, factor,	
quotient, coefficient, constant.	
6.PAFR.2.2 Translate numerical and algebraic	Be careful of leaning on key words and
expressions with positive whole number bases	phrases too much. The mathematical meaning
and positive whole number exponents into	can change based on the placement of key
equivalent expressions.	words and phrases.

Indicator	Indicator Insight
6.PAFR.2.3 Evaluate numerical expressions	This is where students are formally
with positive whole number bases and	introduced to the Order of Operations.
positive whole number exponents using the	Grouping symbols like brackets and
Order of Operations.	parentheses should be used in the expressions.
	Only parentheses are used in fifth grade.
	Provide opportunities to build conceptual
	understanding of the process, not just an
	acronym like GEMDAS.
6.PAFR.2.4 Write and evaluate expressions	Discuss the difference between an expression
using variables to represent quantities in	and an equation.
mathematical and real-world situations.	
6.PAFR.2.5 Write and solve one-step	Discuss why inequalities have a set of
equations and inequalities with one variable	solutions, and how to graph them.
involving positive rational numbers in	Fifth grade is only using substitution to find a
mathematical and real-world situations.	solution to an equation.
6.PAFR.2.6 Interpret the concept of a ratio as	Determine ratios using concrete models,
the relationship between two quantities,	drawings, and words.
including part-to-part and part-to-whole.	Use the following notations: $\frac{a}{b}$, a to b, a:b and
	all notations are read as "a to b."
	This is students' first introduction to ratios
	and ratio reasoning.
6.PAFR.2.7 Explain the relationship between	Rates should be kept in context.
ratios and rates, including unit rates.	
6.PAFR.2.8 Solve ratio and rate problems in	Include using the percent proportion and
real-world situations.	equation when solving problems.
6.PAFR.2.9 Use one-step dimensional	Problems should include measures of mass,
analysis to convert units within the metric or	weight, length, and liquid.
customary systems.	

6.PAFR.3. Apply mathematical patterns, properties, and algorithms to the set of rational numbers to find sums, differences, products, and quotients and to write equivalent expressions.

Indicator	Indicator Insight
6.PAFR.3.1 Represent the solutions of	Connect solutions on the number line to
inequalities on a number line and explain that	solving inequalities in 6.PAFR.2.5.
the solution set may contain an infinite	
number of solutions. Limited to the symbols	
is less than (<) and is greater than (>).	
6.PAFR.3.2 Identify the multiplicative	Allow students to discover this property
inverse of a number and multiply	through multiple examples that are given in
multiplicative inverses to find their product is	context.
equal to one.	This is students' first exposure to
	multiplicative inverse.

Indicator	Indicator Insight
 6.PAFR.3.3 Identify the additive inverse of a number and add additive inverses to find their sum is equal to zero. 6.PAFR.3.4 Apply the properties of operations to create equivalent algebraic expressions and justify the properties used. Limit properties to the <i>Identity, Inverse, Commutative, Associative, and Distributive Properties</i>. 	Allow students to discover this property through multiple examples that are given in context. Manipulatives can be used to help explain how positives and negatives create zero pairs. This is students' first exposure to the <i>Additive</i> <i>Inverse Property</i> . Students are introduced to <i>Distributive</i> <i>Property</i> in fifth grade.
6.PAFR.3.5 Add, subtract, multiply, and divide integers.	Develop generalizations through multiple examples with models and finding patterns. This is an introduction to integer rules. Help students to discover the rules through use of manipulatives and strategies, including but not limited to human number line, two-color counters, and algebra tiles. Include multi-digit integers for all operations.
6.PAFR.3.6 Add, subtract, multiply, and divide positive fractions, including mixed numbers.	Division of a fraction by a fraction is new to students in sixth grade. Strategies should make the connection from models in fifth grade.
6.PAFR.3.7 Add, subtract, multiply, and divide multi-digit positive decimals, up to the thousandths place, to solve problems.	Strategies should make the connection from models in fifth grade to a standard algorithm.

Seventh Grade Math Standards

The standards for Middle School continue the work started in elementary in these four strands: Data, Probability, and Statistical Reasoning; Measurement, Geometry, and Spatial Reasoning; Numerical Reasoning; and Patterns, Algebra, and Functional Reasoning. Woven throughout all four strands are concepts building on students' understanding with problem solving to provide context to the problems they are solving which will foster critical thinking and collaboration skills.

In the Numerical Reasoning strand, seventh graders will extend their understanding of operations to include all rational numbers, promoting student understanding of how rational numbers are used in real-world situations.

In Patterns, Algebra, and Functional Reasoning, seventh graders will expand on what was learned in sixth grade to develop an understanding of proportional relationships. Students will represent algebraic concepts using tables, graphs, verbal descriptions, and equations. Students will distinguish proportional relationships from non-proportional relationships while making the connection between unit rate and constant of proportionality. The extension of this knowledge will lead to the ability to solve single and multi-step problems while working with expressions and linear equations. Students will be provided with multiple opportunities to solve a variety of percentage problems.

In the Data, Probability, and Statistical Reasoning strand, seventh graders will extend their analysis of data sets to two populations using double line graphs, back-to-back stem-and-leaf plots, and double box plots. Students will calculate and interpret problems using both experimental and theoretical probability. Students will make connections and understand probabilities written as fractions, decimals, and percentages.

In the Measurement, Geometry, and Spatial Reasoning strand, seventh graders will be working with two- and three-dimensional figures to solve problems involving area, surface area, and volume. Through exploration and discovery, students will develop an understanding of how to find the circumference and area of circles. This will be the first time these concepts have been introduced. Students will identify congruent angles and solve equations relating to angles formed when lines intersect. Distance between points on the coordinate plane will be found and connected back to the area and perimeter of polygons.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Interpret the meaning of a problem by
		imagining the situation, considering
		multiple entry points, making a plan,
		and choosing a solution pathway.
		Demonstrate flexibility in approaching
		the problem. When the solution
		pathway does not lead to a solution,
		look for another way.
		Recognize that multiple
		representations, including concrete
		models, drawings, expressions,
		equations, verbal descriptions, tables,
		diagrams, and graphs, are related to
		each other and can help them solve the
		problem.
		Compare other students' approaches to
		solving the problem and understand
		there can be multiple ways to solve a
		problem.
		To find a correct solution, consider
		simpler forms of the original problem.
		Students should continually ask
		themselves if a solution is reasonable.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	explain or justify a conjecture.
COMMUNICATION	contextually appropriate	Solve problems collaboratively.
	mathematical language,	Collaborate with others by posing
	tools, and models.	clarifying questions that help deepen
		overall understanding of the concept.
		Be specific with explanations by using
		objects, drawings, pictures, and
		symbolic representations.
		Use a variety of forms to present results
		to an audience.
		Use properties of operations to justify
		the equivalence of expressions.
		Make decisions about which tools are
		necessary to use, or not use, in specific
		situations.
		Demonstrate proficiency in choosing
		technology tools that will aid in
		understanding a concept or formulating
		a solution to the problem.
		Attend to precision when checking
		work and labeling measurements, along
CONNECTIONS		with making revisions as needed.
CONNECTIONS	MPS.C.1 Demonstrate a	Make connections applying number
	deep and flexible	sense with real-world contexts.
	conceptual understanding	Understand that fractions, decimals,
	of mathematical ideas,	and percentages are rational numbers.
	operations, and	Make sense of missing numbers in
	relationships while making real-world connections.	equations by using the relationships among addition, subtraction,
	Tear-world connections.	multiplication, and division.
		Understand that a complex problem is
		made up of many smaller problems
		needing to be solved to get to a "final
		solution."
		Generate mathematical problems using
		the surrounding world.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
STANDARD AREA ANALYZE & JUSTIFY	INDICATOR MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Compare arguments, determine if the logic used is reasonable, and be able to explain any errors or flaws found. Construct written and verbal arguments using objects, numbers, drawings, diagrams, mathematical activities, and mathematical symbols. Make sense of both symbols and numbers. Reason inductively about data, making reasonable arguments that consider the context from which the data arose. As new evidence is presented, review
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	position and revise as necessary.Recognize complex mathematicalobjects and situations as beingcomposed of multiple parts.Apply a variety of strategies to findingsolutions for a problem in context.Notice patterns and structure inrepeated calculations and look forgeneralizations, general methods, andshortcuts.Check for reasonableness and neededadjustments in strategies while solvingproblems.

Data, Probability, and Statistical Reasoning

7.DPSR.1. Analyze data sets to i	dentify their statistical elements.
----------------------------------	-------------------------------------

Indicator	Indicator Insight
7.DPSR.1.1 Create stem-and-leaf plots to	Teach using data displays, not just numerical
represent numerical data sets in mathematical	sets.
and real-world situations.	This is students' first exposure to stem-and-
	leaf plots.
7.DPSR.1.2 Use the shape of the graph to	This indicator continues the work with spread
select which measure of center, mean, median	and center started in sixth grade. Shape
or mode, best describes the data set.	includes right skew, left skew, symmetric,
	uniform, bimodal (two modes), and outliers.
	This is students' first introduction to mean.
7.DPSR.1.3 Calculate and interpret the	Compare the difference between <i>mean</i> ,
measures of center, mean, median, and mode,	median, and mode. Include all rational
and spread, mean absolute deviation,	numbers in the data sets. This is students' first
interquartile range, and range, in	exposure to mean absolute deviation.
mathematical and real-world situations.	

Indicator	Indicator Insight
7.DPSR.1.4 Create histograms to represent	Connecting a stem-and-leaf plot to a
data sets and interpret histograms to answer	histogram can be helpful for students.
questions or draw conclusions about data sets.	

	7.DPSR.2.	Calculate and	d interpret	probability.
--	-----------	---------------	-------------	--------------

Indicator	Indicator Insight
7.DPSR.2.1 Identify the sample space for a	Simple events are introduced in fifth grade.
simple event.	
7.DPSR.2.2 Calculate and interpret the	This is students' first introduction to
theoretical probability of a simple random	theoretical probability. Include replacement
event.	when finding probability.
7.DPSR.2.3 Calculate and interpret the	Conduct actual probability experiments and
experimental probability of a random event	interpret the results.
related to a simple experiment.	
7.DPSR.2.4 Compare and contrast the	Simple experiments include randomly
experimental and theoretical probabilities for	selecting a card from a deck, tossing a coin,
a simple experiment.	rolling a die, spinning a spinner, and
	randomly selecting a colored tile from a bag.
	Represent the probability as a fraction,
	decimal, or percent. Use P(event) notation.
	Have students determine if games are fair or
	unfair.

Measurement, Geometry, and Spatial Reasoning

7.MGSR.1. Determine the measurements of geometric figures.

Indicator	Indicator Insight
7.MGSR.1.1 Identify the parts of a circle.	Understand the definition of a circle. Be able
Parts are limited to center, radius, diameter,	to identify the center, radius, and diameter. Be
and chord.	able to distinguish between a diameter or a
	chord. Understand the relationship between
	radius and diameter.
7.MGSR.1.2 Describe the relationship	Physically explore the attributes of the
between the radius, diameter, and	circumference of a circle as a measure of
circumference of a circle.	length using concrete materials.
	Identify π through a variety of patterns and
	relationships.
	These relationships are another application of
	proportional reasoning.

Indicator	Indicator Insight
7.MGSR.1.3 Solve mathematical and real-	Practice finding the exact area or
world problems involving circumference or	circumference of a circle using π .
area of circles.	Find estimates of area and circumference
	using the approximations for $\mathbf{\pi}$ ($\mathbf{\pi} \approx 3.14$, $\mathbf{\pi} \approx$
	3, or $\mathbf{\pi} \approx \frac{22}{7}$).
	Use the formulas to find missing parts in the
	circumference formula.
	Find the area from a given circumference.
	The expectation is not to find the radius or
	diameter when given the area because that
	involves finding the square root, and seventh
	grade indicators do not include finding square
	roots.
7.MGSR.1.4 Determine if three given side	Exploration activities to discover patterns to
lengths can form a triangle using the Triangle	form a triangle leading to the Triangle
Inequality Theorem.	Inequality Theorem.
7.MGSR.1.5 In mathematical and real-world	Include trapezoidal bases. The formula was
situations, find the volume of right prisms and	discovered in sixth grade.
right pyramids having triangular or	
quadrilateral bases.	
7.MGSR.1.6 In mathematical and real-world	Include trapezoidal bases.
situations, find the surface area of right	Find actual measurements of some figures
prisms and right pyramids having triangular	using rulers to continue the practice from
or quadrilateral bases.	elementary.

7.MGSR.2. Determine angle relationships.

Indicator	Indicator Insight
7.MGSR.2.1 Determine the measure of the	The intent of this indicator is to develop a
third angle given the measure of the other two	conceptual understanding of the angles inside
angles of a triangle.	of a triangle. Write equations to find the
	missing angle measure.
7.MGSR.2.2 Solve mathematical and real-	Find the scale factor of similar figures using
world problems involving dimensions and	both the sides and the areas.
areas of geometric figures including scale	
drawings and scale factors.	
7.MGSR.2.3 Identify the relationships and	Use given angle measurements to solve for
measures among angles formed by two	unknown angle measurements.
intersecting lines given the measure of one	
angle. Relationships are limited to	
supplementary, complementary, vertical, and	
adjacent.	

Indicator	Indicator Insight
7.MGSR.2.4 Write and solve equations to	Instead of a measurement of the angle, there
solve mathematical and real-world problems	is an algebraic expression that will be used to
involving the relationships among angles	find the angle measurement. The expectation
formed by two intersecting lines.	of this indicator is not to have variables on
Relationships are limited to supplementary,	both sides.
complementary, vertical, and adjacent.	

7.MGSR.3. Graph on the coordinate plane.

Indicator	Indicator Insight
7.MGSR.3.1 Find distances between ordered	Connect to finding area and perimeter of
pairs on the coordinate plane, limited to the	polygons by calculating vertical and
same x-coordinate or the same y-coordinate.	horizontal distances.

Numerical Reasoning

7.NR.1. Translate among multiple representations of rational numbers.

Indicator	Indicator Insight
7.NR.1.1 Convert rational numbers into	In sixth grade, denominators are limited.
equivalent forms among fractions (including	
mixed numbers), decimals, and percentages.	
Exclude the conversion of repeating decimals	
to fractions.	

7.NR.2. Utilize rational numbers in mathematical and real-world situations.

Indicator	Indicator Insight
7.NR.2.1 Compare two rational numbers and	Include negative rational numbers.
write statements using <i>is equal to</i> (=), <i>is not</i>	Practice placing all rational numbers on a
equal to (\neq) , is less than (<), is greater than	number line.
(>), is greater than or equal to (\geq), and/or is	Comparisons should include real-world
<i>less than or equal to</i> (\leq).	situations.

Patterns, Algebra, and Functional Reasoning

7.PAFR.1. Use tables, graphs, verbal descriptions, or equations to represent a function.

Indicator	Indicator Insight	
7.PAFR.1.1 Apply proportional reasoning to	Use a variety of situations, including but not	
solve problems in mathematical and real-	limited to markups (percent increase),	
world situations involving ratios and	markdowns (percent decrease), tip, tax,	
percentages.	coupons, discounts, commission, percent	
	error, depreciation, and simple interest.	
7.PAFR.1.2 Create a model with functions	Models should include tables, functions and	
that address a proportional relationship in	their graphs, equations, diagrams, and verbal	
real-world situations.	descriptions.	

Indicator	Indicator Insight
7.PAFR.1.3 Identify the constant of	The constant of proportionality is the unit
proportionality within proportional	rate. Use tables, graphs, and equations to
relationships.	identify the constant of proportionality.
	Introduce $y = kx$.

7.PAFR.2. Write, simplify, and evaluate algebraic expressions; write and solve algebraic equations and inequalities.

Indicator	Indicator Insight		
7.PAFR.2.1 Write and solve multi-step	Include a fraction bar as a grouping symbol.		
equations and inequalities in one variable	Combine like terms, but do not include		
involving rational numbers in mathematical	variables on both sides; one side only.		
and real-world situations.			
7.PAFR.2.2 Write and evaluate expressions in	Include all rational numbers when writing and		
one variable that model mathematical and	evaluating expressions.		
real-world situations.			
7.PAFR.2.3 Compute unit rates, including	Introduce complex fractions, also known as		
those involving complex fractions with like or	compound fractions.		
different units.			
7.PAFR.2.4 Use dimensional analysis to	Problems should include measures of mass,		
convert units between the metric and the	weight, length, and liquid. Convert from		
customary systems.	metric to customary and customary to metric.		

7.PAFR.3. Apply mathematical patterns, properties, and algorithms to the set of rational numbers to find sums, differences, products, and quotients and to write equivalent expressions.

Indicator	Indicator Insight
7.PAFR.3.1 Simplify numerical expressions	Expose students to expressions and models to
that include integer exponents using the laws	look for patterns to create a generalization
of exponents. Rules are limited to the	through examples. Provide experiences to
following: Product Rule, Quotient Rule,	discover the rules.
Power to a Power, Product to a Power,	
Quotient to a Power, and Zero Power	
Property.	
7.PAFR.3.2 Identify linear expressions that	Combine like terms when needed to show
are equivalent.	equivalence.
7.PAFR.3.3 Recognize that algebraic	Use the context to determine an equivalent
expressions may have a variety of equivalent	expression that best matches the situation.
forms and determine an appropriate form for a	Know that there can be multiple forms of the
given real-world situation.	same expression.
7.PAFR.3.4 Factor linear expressions with	Students learn GCF in fifth grade.
positive and negative whole number	
coefficients using the greatest common factor	
(GCF).	

Indicator	Indicator Insight
7.PAFR.3.5 Apply all operations with rational	Include positive and negative fractions and
numbers to solve problems in mathematical	decimals. Develop generalizations through
and real-world situations.	multiple examples with models to find
	patterns.

Seventh & Eighth Grade Compacted Math Standards

The compacted course for seventh grade is the first course in the accelerated middle school mathematics progression. This course incorporates all the seventh-grade standards and specific eighth grade standards that extend the learning from seventh grade. These standards continue the work started in elementary in these four strands: Data, Probability, and Statistical Reasoning; Measurement, Geometry, and Spatial Reasoning; Numerical Reasoning; and Patterns, Algebra, and Functional Reasoning. Woven throughout all four strands are concepts building on students' understanding with problem solving to provide context to the problems they are solving and learning about which will foster critical thinking and collaboration skills.

In the Numerical Reasoning strand, seventh graders taking this course will extend their understanding of operations with all rational numbers, promoting student understanding of how rational numbers are used in real-world situations. The accelerated pathway will extend the concept to include converting any form of a rational number to any other form. This will include the conversion of repeating decimals to fractions. Broadening the understanding of operations with all rational numbers is critical as integer operations are now taught in sixth grade while seventh grade includes operations with all rational numbers. The accelerated pathway will extend even further to real numbers through classifying and ordering subsets of real numbers in the number system.

In Patterning, Algebraic, and Functional Reasoning, students will expand on what was learned in sixth grade to develop an understanding of proportional relationships. They will represent algebraic concepts using tables, graphs, verbal descriptions, and equations. Students will distinguish proportional relationships from non-proportional relationships while making the connection between unit rate and constant of proportionality. The extension of this knowledge will lead to the ability to solve single- and multi-step problems while working with expressions and linear equations. Students will be provided with multiple opportunities to solve a variety of percentage problems. In this accelerated course, there will be an emphasis on functions, particularly linear functions. Students will also see variables on both sides of an equation. In the Data, Probability, and Statistical Reasoning strand, the seventh graders taking this course will extend their analysis of data sets to two populations on double line graphs, back-to-back stem-and-leaf plots, and double box plots. Students will calculate and interpret with experimental and theoretical probability. Since probability is only measured between 0 and 1, this makes for an easy connection to fractions, decimals, and percentages. There are no accelerated extensions in this strand.

In the Measurement, Geometric, and Spatial Reasoning strand, seventh graders will be working with two- and three-dimensional figures to solve problems involving area, surface area, and volume. As an extension for the accelerated progression, students will apply geometric formulas to find the volume of cones, cylinders, and spheres in mathematical and real-world situations. Through exploration and discovery, students will develop an understanding of how to find the circumference and area of circles. This will be the first time these concepts have been introduced. Students will identify congruent angles and solve equations relating to angles formed when lines intersect. Distance between points on the coordinate plane will be found and connected back to the area and perimeter of polygons. Transformations on and off the coordinate

plane, along with relationships between angles of parallel lines cut by a transversal, will be explored in this accelerated progression.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Interpret the meaning of a problem by
		imagining the situation, considering
		multiple entry points, making a plan,
		and choosing a solution pathway.
		Demonstrate flexibility in approaching
		the problem. When the solution
		pathway does not lead to a solution,
		look for another way.
		Recognize that multiple
		representations, including concrete
		models, drawings, expressions,
		equations, verbal descriptions, tables,
		diagrams, and graphs, are related to
		each other and can help them solve the
		problem.
		Compare other students' approaches to
		solving the problem and understand
		there can be multiple ways to solve a
		problem.
		To find a correct solution, consider
		simpler forms of the original problem.
		Students should continually ask
		themselves if a solution is reasonable.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT		
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to		
&	using precise and	explain or justify a conjecture.		
COMMUNICATION	contextually appropriate	Solve problems collaboratively.		
	mathematical language,	Collaborate with others by posing		
	tools, and models.	clarifying questions that help deepen		
		overall understanding of the concept.		
		Be specific with explanations by using		
		objects, drawings, pictures, and		
		symbolic representations.		
		Use a variety of forms to present results		
		to an audience.		
		Use properties of operations to justify		
		the equivalence of expressions.		
		Make decisions about which tools are		
		necessary to use, or not use, in specific		
		situations.		
		Demonstrate proficiency in choosing		
		technology tools that will aid in		
		understanding a concept or formulating		
		a solution to the problem.		
		Attend to precision when checking		
		work and labeling measurements, along		
CONNECTIONS		with making revisions as needed.		
CONNECTIONS	MPS.C.1 Demonstrate a	Make connections applying number		
	deep and flexible	sense with real-world contexts.		
	conceptual understanding	Understand that fractions, decimals,		
	of mathematical ideas,	and percentages are rational numbers.		
	operations, and	Make sense of missing numbers in		
	relationships while making real-world connections.	equations by using the relationships among addition, subtraction,		
	Tear-world connections.	multiplication, and division.		
		Understand that a complex problem is		
		made up of many smaller problems		
		needing to be solved to get to a "final		
		solution."		
		Generate mathematical problems using		
		the surrounding world.		

STANDARD AREA	INDICATOR	INDICATOR INSIGHT		
ANALYZE &	MPS.AJ.1 Use critical	Compare arguments, determine if the		
JUSTIFY	thinking skills to reason	logic used is reasonable, and be able to		
	both abstractly and	explain any errors or flaws found.		
	quantitatively.	Construct written and verbal arguments		
		using objects, numbers, drawings,		
		diagrams, mathematical activities, and		
		mathematical symbols.		
		Make sense of both symbols and		
		numbers.		
		Reason inductively about data, making		
		reasonable arguments that consider the		
		context from which the data arose.		
		As new evidence is presented, review		
		position and revise as necessary.		
STRUCTURE &	MPS.SP.1 Identify and	Recognize complex mathematical		
PATTERNS	apply regularity in	objects and situations as being		
	repeated reasoning to	composed of multiple parts.		
	make generalizations.	Apply a variety of strategies to finding		
		solutions for a problem in context.		
		Notice patterns and structure in		
		repeated calculations and look for		
		generalizations, general methods, and		
		shortcuts.		
		Check for reasonableness and needed		
		adjustments in strategies while solving		
		problems.		

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight		
7.DPSR.1.1 Create stem-and-leaf plots to	Teach using data displays, not just numerical		
represent numerical data sets in mathematical	sets. This is students' first exposure to stem-		
and real-world situations.	and-leaf plots.		
7.DPSR.1.2 Use the shape of the graph to	This indicator continues the work with spread		
select the measure of center, mean, median or	and center started in sixth grade. Shape		
<i>mode</i> , that best describes the data set.	includes right skew, left skew, symmetric,		
	uniform, bimodal (two modes), and outliers.		
	This is students' first introduction to mean.		
7.DPSR.1.3 Calculate and interpret the	Compare the difference between mean,		
measures of center, mean, median, and mode,	median, and mode. Include all rational		
and spread, mean absolute deviation,	numbers in the data sets. This is students' first		
<i>interquartile range, and range</i> , in	exposure to mean absolute deviation.		
mathematical and real-world situations.			

Indicator	Indicator Insight
7.DPSR.1.4 Create histograms to represent	Connecting a stem-and-leaf plot to a
data sets and interpret histograms to answer	histogram can be helpful for students.
questions or draw conclusions about data sets.	

78.DPSR.2.	Calculate	and inter	pret n	robability.
	Curcuiace	wind inteel	P • • • P	100000000000000000000000000000000000000

Indicator	Indicator Insight
7.DPSR.2.1 Identify the sample space for a	Simple events are introduced in fifth grade.
simple event.	
7.DPSR.2.2 Calculate and interpret the	This is students' first introduction to
theoretical probability of a simple random	theoretical probability. Include replacement
event.	when finding probability.
7.DPSR.2.3 Calculate and interpret the	Conduct actual probability experiments and
experimental probability of a random event	interpret the results.
related to a simple experiment.	
7.DPSR.2.4 Compare and contrast the	Simple experiments include randomly
experimental and theoretical probabilities for	selecting a card from a deck, tossing a coin,
a simple experiment.	rolling a die, spinning a spinner, and
	randomly selecting a colored tile from a bag.
	Represent the probability as a fraction,
	decimal, or percent. Use P(event) notation.
	Have students determine if games are fair or
	unfair.

Measurement, Geometry, and Spatial Reasoning

78.MGSR.1. Determine the measurements of geometric figures.

Indicator	Indicator Insight
7.MGSR.1.1 Identify the parts of a circle.	Understand the definition of a circle. Be able
Parts are limited to <i>center, radius, diameter,</i>	to distinguish between a diameter and other
and chord.	chords. Understand the relationship between
	radius and diameter.
7.MGSR.1.2 Describe the relationship	Physically explore the attributes of the
between the radius, diameter, and	circumference of a circle as a measure of
circumference of a circle.	length using concrete materials.
	Identify π through a variety of patterns and
	relationships.
	These relationships are another application of
	proportional reasoning.

Indicator	Indicator Insight
7.MGSR.1.3 Solve mathematical and real- world problems involving circumference or area of circles.	Practice finding the exact area or circumference of a circle using π . Find estimates of area and circumference using the approximations for π ($\pi \approx 3.14$, $\pi \approx$ 3 or $\pi \approx \frac{22}{7}$). Use the formulas to find missing parts in the circumference formula. Find the area from a given circumference. The expectation is not to find the radius or diameter when given the area because that involves finding the square root, and seventh grade indicators do not include finding square roots.
 7.MGSR.1.4 Determine if three given side lengths can form a triangle using the Triangle Inequality Theorem. 7.MGSR.1.5 In mathematical and real-world situations, find the volume of prisms and pyramids having triangular or quadrilateral bases. 	Exploration activities to discover patterns to form a triangle leading to the Triangle Inequality Theorem. Include trapezoidal bases. The formula was discovered in sixth grade.
7.MGSR.1.6 In mathematical and real-world situations, find the surface area of prisms and pyramids having triangular or quadrilateral bases.	Include trapezoidal bases. Find actual measurements of some figures using rulers to continue the practice from elementary.
8.MGSR.1.1 Given the geometric formulas, find the volume of cones, cylinders, and spheres in mathematical and real-world situations.	Show that the volume of a cone is $\frac{1}{3}$ the volume of a cylinder with congruent heights and bases through hands-on experiences.

78.MGSR.2. Determine angle relationships.

Indicator	Indicator Insight
7.MGSR.2.1 Determine the measure of the	The intent of this indicator is to develop a
third angle given the measure of the other two	conceptual understanding of the angles inside
angles of a triangle.	of a triangle. Write equations to find the
	missing angle measure.
7.MGSR.2.2 Solve mathematical and real-	Find the scale factor of similar figures using
world problems involving dimensions and	both the sides and the areas.
areas of geometric figures including scale	
drawings and scale factors.	
7.MGSR.2.3 Identify the relationships and	Use given angle measurements to solve for
measures among angles formed by two	unknown angle measurements.
intersecting lines given the measure of one	
angle. Relationships are limited to	
supplementary, complementary, vertical, and	
adjacent.	

Indicator	Indicator Insight
7.MGSR.2.4 Write and solve equations to	Instead of a measurement of the angle, there
solve mathematical and real-world problems	is an algebraic expression that will be used to
involving the relationships among angles	find the angle measurement. Avoid variables
formed by two intersecting lines.	on both sides.
Relationships are limited to supplementary,	
complementary, vertical, and adjacent.	
8.MGSR.2.1 Determine missing angle	Consider complementary, supplementary,
measurements created when parallel lines are	vertical, adjacent, same side interior, alternate
cut by a transversal.	interior, and alternate exterior angles.
	At this point, parallel and perpendicular lines
	should be defined.
8.MGSR.2.2 Determine if two-dimensional	Use proportional reasoning to determine if
figures are congruent or similar.	figures are congruent or similar.
8.MGSR.2.3 Identify the congruent	Use appropriate labeling.
corresponding angles of similar polygons.	
8.MGSR.2.5 Apply proportional reasoning to	Given lengths of corresponding sides, use a
find the missing side lengths of two similar	proportion to solve for the missing side. Sides
figures.	could include algebraic expressions limited to
	linear equations.

78.MGSR.3. Graph on the coordinate plane.

Indicator	Indicator Insight
7.MGSR.3.1 Find distances between ordered	Connect to finding area and perimeter of
pairs on the coordinate plane, limited to the	polygons by calculating vertical and
same x-coordinate or the same y-coordinate.	horizontal distances.
8.MGSR.3.1 Identify the transformation as a	Can be on or off a coordinate plane.
rotation, reflection, and/or translation.	Given a preimage and image, name the
Rotations should be limited to multiples of 90	transformation.
degrees centered on the origin.	Attention should be given to congruence to
	the two images.
	Use a variety of methods including but not
	limited to manipulatives and technology.
8.MGSR.3.3 Translate geometric figures	Use verbal descriptions as well as ordered
vertically and/or horizontally.	pairs to describe the translations. Use a
	variety of methods including but not limited
	to manipulatives and technology.
8.MGSR.3.4 Reflect geometric figures with	Focus only on reflections over the x-axis or y-
respect to the x-axis and/or y-axis.	axis, not over any other lines.
	Use a variety of methods including but not
	limited to manipulatives and technology.
8.MGSR.3.5 Rotate geometric figures 90,	Identify rotational symmetry of two-
180, and 270 degrees, both clockwise and	dimensional figures. Use a variety of methods
counterclockwise, about the origin in a	including but not limited to manipulatives and
coordinate plane.	technology. This will be students'
	introduction to symmetry.

Indicator	Indicator Insight
8.MGSR.3.6 Create a dilation using a given	Dilation is centered at origin.
scale factor and describe the effect of a	Name the scale factor.
dilation.	Use a variety of methods including but not
	limited to manipulatives and technology.
8.MGSR.3.7 Describe the effect of a series of	Rotate in multiples of 90 degrees around the
transformations, including <i>dilations</i> ,	origin and dilate centered on origin.
translations, rotations, and reflections, on	Translate geometric figures horizontally and
two-dimensional figures using coordinates on	vertically. Use ordered pairs to describe the
the coordinate plane.	translation.
	Given two congruent figures, determine the
	sequence of transformation.
	Use a variety of methods including but not
	limited to manipulatives and technology.

Numerical Reasoning

78.NR.1. Translate among multiple representations of rational numbers.

Indicator	Indicator Insight
7.NR.1.1 Convert rational numbers into	In sixth grade, the denominators are limited.
equivalent forms among fractions, decimals,	
and percentages. Exclude the conversion of	
repeating decimals to fractions.	
8.NR.1.1 Convert any form of a rational	Include the conversion of repeating decimals
number to any other form including fractions	to fractions.
(mixed numbers), decimals, and percentages.	

78.NR.2. Utilize real numbers in mathematical and real-world situations.

Indicator	Indicator Insight
7.NR.2.1 Compare two rational numbers and	Include negative rational numbers.
write statements using is equal to (=), is not	Practice placing all rational numbers on a
equal to (\neq) , is less than (<), is greater than	number line. Comparisons should include
(>), is greater than or equal to (\geq), and/or is	real-world situations.
<i>less than or equal to</i> (\leq) in mathematical and	
real-world situations.	
8.NR.2.1 Compare real numbers and write	Comparisons should include problems based
statements using is equal to (=), is not equal	on real-world situations.
to (\neq) , is less than $(<)$, is greater than $(>)$, is	
greater than or equal to (\geq) , or is less than or	
equal to (\leq) .	
8.NR.2.2 Classify and order the subsets of	Use a Venn diagram to classify numbers.
real numbers in the number system including	Use a number line to locate and order them.
natural, whole, integer, rational, and irrational	Describe the difference between a rational
numbers.	and irrational number.

Patterns, Algebra, and Functional Reasoning

Indicator	Indicator Insight
7.PAFR.1.1 Apply proportional reasoning to	Use a variety of situations, including markups
solve problems in mathematical and real-	(percent increase), markdowns (percent
world situations involving ratios and	decrease), tip, tax, coupons, discounts,
percentages.	commission, percent error, depreciation,
	simple interest.
7.PAFR.1.2 Create a model with functions	Models should include tables, functions and
that address a proportional relationship in	their graphs, equations, diagrams, and verbal
real-world situations.	descriptions.
7.PAFR.1.3 Identify the constant of	The constant of proportionality is the unit
proportionality within proportional	rate. Use tables, graphs, and equations to
relationships.	identify the constant of proportionality.
	Introduce $y = kx$.
8.PAFR.1.1 Define an equation in slope-	Introduce that slope-intercept form is a linear
intercept form $(y = mx + b)$ as being a linear	function.
function.	
8.PAFR.1.2 Identify and describe the constant	Interpret the rate of change and y intercept in
rate of change of a linear function using a	context.
graph and table.	Connect $y = kx$ (constant of proportionality)
	to constant rate of change.
8.PAFR.1.3 Determine if a graph, table,	Identify the domain and range as a list of
mapping, or verbal description is a function	numbers or as an inequality (could include
(linear or nonlinear) or not a function.	compound inequalities).
	Have students recognize that a table may not
	determine a function.
8.PAFR.1.4 Describe the key features of	Identify the domain and range as a list of
given functions, including domain, range,	numbers or as an inequality (could include
intervals of increasing or decreasing, constant,	compound inequalities).
discrete, continuous, and intercepts.	Describe whether the function is increasing, decreasing, or constant.
	Draw the graph from a written description or
	write a description of the graphical
8 PAFR 1.6 Translate among the multiple	
• •	
	and Drahming tools for Brahms is pageotod.
(only when linear) of a function.	
8.PAFR.1.6 Translate among the multiple representations including mappings, tables, graphs, verbal description, and equations (only when linear) of a function	representation. Technology such as spreadsheets for tables and graphing tools for graphs is suggested.

78.PAFR.1. Determine if a table, graph, verbal description, or equation represents a function and describe its characteristics.

78.PAFR.2. Write, simplify, and evaluate algebraic expressions; write and solve algebraic equations and inequalities.

Indicator	Indicator Insight
7.PAFR.2.1 Write and solve multi-step	Include a fraction bar as a grouping symbol.
equations and inequalities in one variable	Combine like terms, but do not include
involving rational numbers in mathematical	variables on both sides; one side only.
and real-world situations.	
7.PAFR.2.2 Write and evaluate expressions in	Include all rational numbers when writing and
one variable that model mathematical and	evaluating expressions.
real-world situations.	
7.PAFR.2.3 Compute unit rates, including	Introduce complex fractions, also known as
those involving complex fractions with like or	compound fractions.
different units.	
7.PAFR.2.4 Use dimensional analysis to	Problems should include measures of mass,
convert units between the metric and the	weight, length, and liquid. Include mass,
customary systems.	weight, length, and liquid measures. Convert
	from metric to customary and customary to
	metric.
8.PAFR.2.1 Solve multi-step one variable	This is students' introduction to equations and
equations and inequalities with variables on	inequalities with variables on both sides.
both sides with rational coefficients.	
8.PAFR.2.3 Identify the rate of change for a	This indicator helps students understand the
linear function as the slope of the line.	slope is the rate of change.

78.PAFR.3. Apply mathematical patterns, properties, and algorithms to the set of rational numbers to find sums, differences, products, and quotients and to write equivalent expressions.

схрі сэзіонз.	
Indicator	Indicator Insight
7.PAFR.3.1 Simplify numerical expressions	Expose students to expressions and models to
that include integer exponents using the laws	look for patterns to create a generalization
of exponents. Rules are limited to the	through examples. Provide experiences to
following: Product Rule, Quotient Rule,	discover the rules.
Power to a Power, Product to a Power,	
Quotient to a Power, and Zero Power	
Property.	
7.PAFR.3.2 Identify linear expressions that	Combine like terms when needed to show
are equivalent.	equivalence.
7.PAFR.3.3 Recognize that algebraic	Use the context to determine an equivalent
expressions may have a variety of equivalent	expression that best matches the situation.
forms and determine an appropriate form for a	Know that there can be multiple forms of the
given real-world situation.	same expression.
7.PAFR.3.4 Factor linear expressions with	Students learn GCF in fifth grade.
integer coefficients using the greatest	
common factor (GCF).	

Indicator	Indicator Insight
7.PAFR.3.5 Apply all operations with rational	Include positive and negative fractions and
numbers to solve problems in mathematical	decimals. Develop generalizations through
and real-world situations.	multiple examples with models to find
	patterns.
8.PAFR.3.3 Apply laws of exponents to	This indicator extends the laws of exponents
simplify algebraic expressions involving no	from seventh grade where students are
more than three variables and integer	evaluating numerical expressions.
exponents.	

Eighth Grade Math Standards

The standards for Middle School continue the work started in elementary in these four strands: Data, Probability, and Statistical Reasoning; Measurement, Geometry, and Spatial Reasoning; Numerical Reasoning; and Patterns, Algebra, and Functional Reasoning. Woven throughout all four strands are concepts building on students' understanding with problem solving to provide context to the problems they are solving which will foster critical thinking and collaboration skills.

In the Numerical Reasoning strand, eighth graders will convert any form of rational numbers to other forms, which for the first time includes translating repeating decimals to their fraction form. This strand also has students identify the subsets of Real Numbers and contrast rational and irrational numbers, which will include working with perfect squares and cubes and their roots. They will write equations and inequalities to compare real numbers given in real-world settings. Students will apply the Laws of Exponents learned in seventh grade to include algebraic expressions.

In the Patterns, Algebra, and Functional Reasoning strand, eighth graders will concentrate on functions, learning the slope-intercept form of a linear function. Students' connect proportionality and linear functions together so that the constant rate of change (slope) and *y*-intercept can be identified and interpreted. Students will analyze multiple representations of functions to determine if they represent a linear or nonlinear function or represent a non-function. For the first time, students compare two equations to determine if they represent functions. Also, for the first time, they solve one-variable multi-step equations and inequalities with the same variable on both sides.

In Data, Probability, and Statistical Reasoning, eighth graders will compare bivariate (two variable) data. This is the first time that students will work with two variables simultaneously. They will use scatter plots to organize bivariate data from real-world situations. Students will estimate the line of best fit for scatter plots and describe associations among the data points by their direction, form, strength, and, when applicable, clusters, gaps, and outliers. Eighth graders will identify sample spaces and calculate and interpret the probability of compound events, using fractions, decimals, or percentages to report the probability of events.

In the Measurement, Geometry, and Spatial Reasoning strand, eighth graders will use technology to explore volume and other formulas to include the *Pythagorean Theorem*. The focus on right triangles will also include Pythagorean Triples, the Triangle Sum Theorem, the relationship among the measures of triangles' interior and exterior angles, and sums of angle measures of polygons decomposed into triangles. Eighth graders will study transformations and dilations of polygons graphed on or off of the coordinate plane. Students will study angle relationships of parallel lines. Students will also use proportional reasoning to determine congruence or similarity among polygons, finding the missing side lengths and identifying corresponding angles.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Interpret the meaning of a problem by
		imagining the situation, considering
		multiple entry points, making a plan,
		and choosing a solution pathway.
		Demonstrate flexibility in approaching
		the problem. When the solution
		pathway does not lead to a solution,
		look for another way.
		Recognize that multiple
		representations, including concrete
		models, drawings, expressions,
		equations, verbal descriptions, tables,
		diagrams, and graphs, are related to
		each other and can help them solve the
		problem.
		Compare other students' approaches to
		solving the problem and understand
		there can be multiple ways to solve a
		problem.
		To find a correct solution, consider
		simpler forms of the original problem.
		Students should continually ask
		themselves if a solution is reasonable.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	explain or justify a conjecture.
COMMUNICATION	contextually appropriate	Solve problems collaboratively.
	mathematical language,	Collaborate with others by posing
	tools, and models.	clarifying questions that help deepen
		overall understanding of the concept.
		Be specific with explanations by using
		objects, drawings, pictures, and
		symbolic representations.
		Use a variety of forms to present results
		to an audience.
		Use properties of operations to justify
		the equivalence of expressions.
		Make decisions about which tools are
		necessary to use, or not use, in specific
		situations.
		Demonstrate proficiency in choosing
		technology tools that will aid in
		understanding a concept or formulating
		a solution to the problem.
		Attend to precision when checking
		work and labeling measurements, along
CONNECTIONS		with making revisions as needed.
CONNECTIONS	MPS.C.1 Demonstrate a	Make connections applying number
	deep and flexible	sense with real-world contexts.
	conceptual understanding	Understand that fractions, decimals,
	of mathematical ideas,	and percentages are rational numbers.
	operations, and	Make sense of missing numbers in
	relationships while making real-world connections.	equations by using the relationships among addition, subtraction,
	Tear-world connections.	multiplication, and division.
		Understand that a complex problem is
		made up of many smaller problems
		needing to be solved to get to a "final
		solution."
		Generate mathematical problems using
		the surrounding world.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Compare arguments, determine if the
JUSTIFY	thinking skills to reason	logic used is reasonable, and be able to
	both abstractly and	explain any errors or flaws found.
	quantitatively.	Construct written and verbal arguments
		using objects, numbers, drawings,
		diagrams, mathematical activities, and mathematical symbols.
		Make sense of both symbols and
		numbers.
		Reason inductively about data, making
		reasonable arguments that consider the
		context from which the data arose.
		As new evidence is presented, review
		position and revise as necessary.
STRUCTURE &	MPS.SP.1 Identify and	Recognize complex mathematical
PATTERNS	apply regularity in	objects and situations as being
	repeated reasoning to	composed of multiple parts.
	make generalizations.	Apply a variety of strategies to finding
		solutions for a problem in context.
		Notice patterns and structure in
		repeated calculations and look for
		generalizations, general methods, and
		shortcuts.
		Check for reasonableness and needed
		adjustments in strategies while solving
		problems.

Data, Probability, and Statistical Reasoning

8.DPSR.1. Analyze data sets to identify their statistical elements.

Indicator	Indicator Insight
8.DPSR.1.1 Create and analyze scatter plots	Analyze the correlation of the data points to
to represent numerical data sets in	determine whether it is strong, weak, or no
mathematical and real-world situations.	correlation. Determine if there is a negative,
	positive, or no relationship.
8.DPSR.1.2 Draw inferences about data sets	Give examples of similarities and differences
from two populations using the shape of the	and usefulness of these measures of center
distribution, measures of center, and measures	and variability. Use a box plot to compare two
of variability. Measures are limited to mean,	different populations. Draw inferences about
median, mode, range, mean absolute	data sets that contain outliers.
deviation, and interquartile range.	
8.DPSR.1.3 Describe how adding and	Data set discussions should include the effects
deleting data throughout the data set can	of outliers.
affect the mean, median, mode, and	
distribution of the data set.	

Indicator	Indicator Insight
8.DPSR.1.4 For two data sets, compare and	Give a visual comparison between two data
interpret the centers, spreads, and overlap of	sets. Data sets should include numerical or
data to draw inferences about data in	graphical sets. This would be a good place to
mathematical and real-world situations. Limit	compare correlation versus causation.
displays to double line graphs, back-to-back	
stem-and-leaf plots, and double box plots.	

8.DPSR.2. Calculate and interpret probability.

Indicator	Indicator Insight
8.DPSR.2.1 Determine the sample space for a	Use organized lists, tables, or tree diagrams.
compound event.	
8.DPSR.2.2 Calculate and interpret the	Use organized lists, tables, and tree diagrams.
probability of compound independent and	Report probability as a fraction, decimal, or
dependent events.	percentage.

Measurement, Geometry, and Spatial Reasoning

5.WGSK.1. Determine the measurements of geometric rightes.	
Indicator	Indicator Insight
8.MGSR.1.1 Given the geometric formulas, find the volume of cones, cylinders, and spheres in mathematical and real-world situations.	Show that the volume of a cone is $\frac{1}{3}$ the volume of a cylinder with congruent heights and bases through hands-on experiences.
8.MGSR.1.2 Find the distance between any two points in the coordinate plane using the <i>Pythagorean Theorem</i> .	Use the <i>Pythagorean Theorem</i> to find the length of the diagonal line in the coordinate plane by drawing a right triangle.
8.MGSR.1.3 Given the <i>Pythagorean</i> <i>Theorem</i> , determine unknown side lengths in right triangles in mathematical and real-world situations.	The <i>Pythagorean Theorem</i> can be used to find any side of the right triangle, not just the hypotenuse.
8.MGSR.1.4 Determine if a given set of sides forms a right triangle.	Identify the pattern in Pythagorean triples. Use Converse of <i>Pythagorean Theorem</i> .

8.MGSR.1. Determine the measurements of geometric figures.

8.MGSR.2. Determine angle relationships.

Indicator	Indicator Insight
8.MGSR.2.1 Determine missing angle	Consider complementary, supplementary,
measurements created when parallel lines are	vertical, adjacent, same side interior, alternate
cut by a transversal.	interior, and alternate exterior angles.
	At this point, parallel and perpendicular lines
	should be defined.
8.MGSR.2.2 Determine if two-dimensional	Use proportional reasoning to determine if
figures are congruent or similar.	figures are congruent or similar.
8.MGSR.2.3 Identify the congruent	Use appropriate labeling.
corresponding angles of similar polygons.	

Indicator	Indicator Insight
8.MGSR.2.4 Discover and apply the Exterior	Connect to the study of supplementary angles
Angle Theorem of triangles to find a missing	in seventh grade.
angle.	
8.MGSR.2.5 Apply proportional reasoning to	Given lengths of corresponding sides, use a
find the missing side lengths of two similar	proportion to solve for the missing side. Sides
figures.	could include algebraic expressions limited to
	linear equations.

Indicator	Indicator Insight
8.MGSR.3.1 Identify the transformation as a	Can be on or off a coordinate plane.
rotation, reflection, and/or translation.	Given a preimage and image, name the
Rotations should be limited to multiples of 90	transformation.
degrees centered on the origin.	Attention should be given to congruence to
	the two images.
	Use a variety of methods including but not
	limited to manipulatives and technology.
8.MGSR.3.2 Identify congruent angles and	Congruent images should include a single
congruent line segments of a preimage and its	and/or multiple rigid transformations.
image.	
8.MGSR.3.3 Translate geometric figures	Use verbal descriptions as well as ordered
vertically and/or horizontally.	pairs to describe the translations. Use a
	variety of methods including but not limited
	to manipulatives and technology.
8.MGSR.3.4 Reflect geometric figures with	Focus only on reflections over the <i>x</i> -axis or <i>y</i> -
respect to the x-axis and/or y-axis.	axis, not over any other lines.
	Use a variety of methods including but not
	limited to manipulatives and technology.
8.MGSR.3.5 Rotate geometric figures 90,	Identify rotational symmetry of two-
180, and 270 degrees, both clockwise and	dimensional figures. Use a variety of methods
counterclockwise, about the origin in a	including but not limited to manipulatives and
coordinate plane.	technology. This will be students'
	introduction to symmetry.
8.MGSR.3.6 Create a dilation using a given	Dilation is centered at origin.
scale factor and describe the effect of a	Name the scale factor.
dilation.	Use a variety of methods including but not
	limited to manipulatives and technology.

8.MGSR.3. Graph on a coordinate plane.

Indicator	Indicator Insight
8.MGSR.3.7 Describe the effect of a series of	Rotate in multiples of 90 degrees around the
transformations, including dilations,	origin and dilate centered on origin.
translations, rotations, and reflections, on	Translate geometric figures horizontally and
two-dimensional figures using coordinates on	vertically. Use ordered pairs to describe the
the coordinate plane.	translation.
	Given two congruent figures, determine the
	sequence of transformation.
	Use a variety of methods including but not
	limited to manipulatives and technology.

Numerical Reasoning

8.NR.1. Translate among multiple representations of rational numbers.

Indicator	Indicator Insight
8.NR.1.1 Convert any form of a rational	Include the conversion of repeating decimals
number to any other form including fractions	to fractions.
(mixed numbers), decimals, and percentages.	

8.NR.2. Utilize real numbers in mathematical and real-world situations.

Indicator	Indicator Insight
8.NR.2.1 Compare real numbers and write	Comparisons should include problems based
inequality statements using is equal to $(=)$, is	on real-world situations.
not equal to (\neq) , is less than (<), is greater	
than (>), is greater than or equal to (\geq), or is	
less than or equal to (\leq).	
8.NR.2.2 Classify and order the subsets of	Use a Venn diagram to classify numbers.
real numbers in the number system including	Use a number line to locate and order them.
natural, whole, integer, rational, and irrational	Describe the difference between a rational
numbers.	and irrational number.

Patterns, Algebra, and Functional Reasoning

8.PAFR.1. Determine if a table, graph, verbal description, or equation represents a function and describe its characteristics.

Indicator	Indicator Insight
8.PAFR.1.1 Define an equation in slope-	Introduce that slope-intercept form is a linear
intercept form $(y = mx + b)$ as being a linear	function.
function.	
8.PAFR.1.2 Identify and describe the constant	Interpret the rate of change and y intercept in
rate of change of a linear function using a	context.
graph and table.	Connect $y = kx$ (constant of proportionality)
	that was learned in seventh grade to constant
	rate of change.

Indicator	Indicator Insight
8.PAFR.1.3 Determine if a graph, table,	Identify the domain and range as a list of
mapping, or verbal description is a function	numbers or as an inequality (could include
(linear or nonlinear) or not a function.	compound inequalities).
	Have students recognize that a table may not
	determine a function.
8.PAFR.1.4 Describe the key features of	Identify the domain and range as a list of
given functions, including domain, range,	numbers or as an inequality (could include
intervals of increasing or decreasing,	compound inequalities).
constant, discrete, continuous, and intercepts.	Describe whether the function is increasing,
	decreasing, or constant.
	Draw the graph from a written description or
	write a description of the graphical
	representation.
8.PAFR.1.5 Use multiple representations	Technology such as spreadsheets for tables
including mappings, tables, graphs, verbal	and Graphing Utility for graphs is suggested.
description, and equations (only when linear)	
of two functions to compare the functions and	
draw conclusions.	
8.PAFR.1.6 Translate among the multiple	Technology such as spreadsheets for tables
representations including mappings, tables,	and Graphing Utility for graphs is suggested.
graphs, verbal description, and equations	
(only when linear) of a function.	

8.PAFR.2. Write, simplify, and evaluate algebraic expressions; write and solve algebraic equations and inequalities.

Indicator	Indicator Insight
8.PAFR.2.1 Solve multi-step one variable	This is students' introduction to equations and
equations and inequalities with variables on	inequalities with variables on both sides.
both sides with rational coefficients.	
8.PAFR.2.2 Describe single-variable	Students need to recognize the three types of
equations as having one solution, no solution,	possible solutions using tables, graphs, or
or an infinite number of solutions.	equations.
8.PAFR.2.3 Identify the rate of change for a	This indicator helps students understand the
linear function as the slope of the line.	slope is the rate of change.
8.PAFR.2.4 Explain why the slope, <i>m</i> , is the	Students need to understand that the distance
same between any two distinct points on a	between points on the line are always
linear graph.	proportionally the same.
8.PAFR.2.5 Given a table or a graph, identify	Include multiple symbolic representations.
the slope and the <i>y</i> -intercept of a line and	
write a linear equation to express that line.	

8.PAFR.3. Apply mathematical patterns, properties, and algorithms to the set of rational numbers to find sums, differences, products, and quotients and to write equivalent expressions.

Indicator	Indicator Insight
8.PAFR.3.1 Analyze patterns of perfect squares and perfect cubes to evaluate square roots and cube roots. Limit to square roots less than or equal to 400 and cube roots less than or equal to 1,000.	Look at patterns to make connections to geometric squares and cubes. Use tiles, unit cubes, and/or centimeter cubes to build geometric squares and cubes.
8.PAFR.3.2 Approximate non-perfect square roots and cube roots to nearest tenth. Limit to square roots less than or equal to 400 and cube roots less than or equal to 1,000.	Use a variety of strategies, including but not limited to manipulatives and number lines, to help build student understanding.
8.PAFR.3.3 Apply laws of exponents to simplify algebraic expressions involving no more than three variables and integer exponents.	This indicator extends the laws of exponents from seventh grade where students are evaluating only numerical expressions.

Eighth Grade & Geometry Compacted Math Standards

Students taking this course are a part of the accelerated progression. This course will be a combination of eighth grade math indicators and Geometry with Statistics indicators. The indicators from eighth grade that were chosen to be embedded in this course are those that align with the indicators for Geometry, along with others that will help prepare students to be successful in this Geometry course.

Geometry with Statistics is a newly designed course that builds on the students' experiences in the middle grades. It is the first of three required courses in high school mathematics, providing a common experience for all students entering high-school-level mathematics. Geometry with Statistics builds essential concepts necessary for students to meet their postsecondary goals, whether they pursue additional study or enter the workforce, to function as effective citizens, and to recognize the wonder, joy, and beauty of mathematics (NCTM, 2018). This is important because it helps students develop mathematical knowledge and skills through visual representations prior to the more abstract development of Algebra.

Offering Geometry with Statistics in eighth grade allows students the opportunity to build their reasoning and sensemaking skills, see the applicability of mathematics, and prepare more effectively for further studies in Algebra. The course also focuses on statistics in analyzing data, which provides students with tools to describe, show, and summarize data in the world around them.

In Geometry with Statistics, students incorporate knowledge and skills from several mathematics content areas, leading to a deeper understanding of fundamental relationships within the discipline and building a solid foundation for further study. In the content area of Geometry and Measurement, students build on and deepen prior understanding of transformations, congruence, similarity, and coordinate geometry concepts. Informal explorations of transformations provide a foundation for more formal considerations of congruence and similarity, including development of criteria for triangle congruence and similarity. An emphasis on reasoning throughout the content area promotes exploration, conjecture testing, and informal and formal justification. In the content area of Algebra and Functions, students perform algebraic calculations with specific application to Geometry that build on foundations of Algebra from seventh and eighth grades. Probability is important because it educates one in the logic of uncertainty and randomness, which occur in almost every aspect of daily life. Therefore, studying probability structures will enhance students' ability to organize information and improve decision-making.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Interpret the meaning of a problem by
		imagining the situation, considering
		multiple entry points, making a plan,
		and choosing a solution pathway.
		Demonstrate flexibility in approaching
		the problem. When the solution
		pathway does not lead to a solution,
		look for another way.
		Recognize that multiple
		representations, including concrete
		models, drawings, expressions,
		equations, verbal descriptions, tables,
		diagrams, and graphs, are related to
		each other and can help them solve the
		problem.
		Compare other students' approaches to
		solving the problem and understand
		there can be multiple ways to solve a
		problem.
		To find a correct solution, consider
		simpler forms of the original problem.
		Students should continually ask
		themselves if a solution is reasonable.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in mathematical discourse to
&	using precise and	explain or justify a conjecture.
COMMUNICATION	contextually appropriate	Solve problems collaboratively.
	mathematical language,	Collaborate with others by posing
	tools, and models.	clarifying questions that help deepen
		overall understanding of the concept.
		Be specific with explanations by using
		objects, drawings, pictures, and
		symbolic representations.
		Use a variety of forms to present results
		to an audience.
		Use properties of operations to justify
		the equivalence of expressions.
		Make decisions about which tools are
		necessary to use, or not use, in specific
		situations.
		Demonstrate proficiency in choosing
		technology tools that will aid in
		understanding a concept or formulating a solution to the problem.
		Attend to precision when checking
		work and labeling measurements, along
		with making revisions as needed.
CONNECTIONS	MPS.C.1 Demonstrate a	Make connections applying number
	deep and flexible	sense with real-world contexts.
	conceptual understanding	Understand that fractions, decimals,
	of mathematical ideas,	and percentages are rational numbers.
	operations, and	Make sense of missing numbers in
	relationships while making	equations by using the relationships
	real-world connections.	among addition, subtraction,
		multiplication, and division.
		Understand that a complex problem is
		made up of many smaller problems
		needing to be solved to get to a "final
		solution."
		Generate mathematical problems using
		the surrounding world.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
STANDARD AREA ANALYZE & JUSTIFY	INDICATOR MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Compare arguments, determine if the logic used is reasonable, and be able to explain any errors or flaws found. Construct written and verbal arguments using objects, numbers, drawings, diagrams, mathematical activities, and mathematical symbols. Make sense of both symbols and numbers. Reason inductively about data, making reasonable arguments that consider the context from which the data arose. As new evidence is presented, review
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	position and revise as necessary.Recognize complex mathematicalobjects and situations as beingcomposed of multiple parts.Apply a variety of strategies to findingsolutions for a problem in context.Notice patterns and structure inrepeated calculations and look forgeneralizations, general methods, andshortcuts.Check for reasonableness and neededadjustments in strategies while solvingproblems.

Data, Probability, and Statistical Reasoning

GS.DPSR.1. Summarize, represent, and interpret data on two categorical and quantitative	
variables.	

Indicator	Indicator Insight
GS.DPSR.1.1 Represent data for two	Include linear and nonlinear associations.
quantitative variables on a scatter plot and	
describe how the variables are related.	
GS.DPSR.1.2 Use two representative points	Use a low-tech approach to identify possible
from the data to find an approximate line of	pairs of points for the approximate line of best
fit and compare it to the line of best fit.	fit.
GS.DPSR.1.3 Conduct an investigation for a	Distinguish statistical questions from other
statistical question, interpret statistical	types of questions.
significance in the context of a situation, and	Compose statistical questions to collect and
answer investigative questions appropriately.	analyze appropriate data to answer the
	statistical investigative question.

Indicator	Indicator Insight
8.DPSR.1.1 Create and analyze scatter plots	Analyze the correlation of the data points to
to represent numerical data sets in	determine whether it is strong, weak, or no
mathematical and real-world situations.	correlation. Determine if there is a negative,
	positive, or no relationship.
8.DPSR.1.2 Draw inferences about data sets	Give examples of similarities and differences
from two populations using the shape of the	and usefulness of these measures of center
distribution, measures of center, and measures	and variability. Use a box plot to compare two
of variability. Measures are limited to mean,	different populations. Draw inferences about
median, mode, range, mean absolute	data sets that contain outliers.
deviation, and interquartile range.	
8.DPSR.1.3 Give examples of similarities and	Data set discussions should include the effects
differences and usefulness of these measures	of outliers.
of center and variability. Use a box plot to	
compare two different populations. Include	
data sets with outliers.	
8.DPSR.1.4 For two data sets, compare and	Give a visual comparison between two data
interpret the centers, spreads, and overlap of	sets. Data sets should include numerical or
data to draw inferences about data in	graphical sets. This would be a good place to
mathematical and real-world situations. Limit	compare correlation versus causation.
displays to double line graphs, back-to-back	
stem-and-leaf plots, and double box plots.	

8.DPSR.1. Analyze data sets to identify their statistical elements.

GS.DPSR.2. Analyze and interpret models for two quantitative variables.

Indicator	Indicator Insight
GS.DPSR.2.1 Distinguish between correlation	Explore possible reasons for an association:
and causation.	• Predictor causes response,
	Response causes predictor,
	• Lurking variable, or
	Random occurrence.

8.DPSR.2. Calculate and interpret probability.

Indicator	Indicator Insight
8.DPSR.2.1 Determine the sample space for a	Use organized lists, tables, or tree diagrams.
compound event.	
8.DPSR.2.2 Calculate and interpret the	Use organized lists, tables, and tree diagrams.
probability of compound independent and	Report probability as a fraction, decimal, or
dependent events.	percentage.

GS.DPSR.3. Solve problems involving the probability of compound events in real-world	
situations.	

Indicator	Indicator Insight
GS.DPSR.3.1 Describe categories of events	Consider using Venn Diagrams.
as subsets of a sample space using <i>unions</i> ,	
intersections, or complements of other events.	
GS.DPSR.3.2 Apply the Addition Rule	Consider using Venn Diagrams.
to find the probability of both mutually	
exclusive and not mutually exclusive events	
and interpret the answers in context.	
GS.DPSR.3.3 Apply the Multiplication Rule	Give real-world examples of events occurring
to determine the probability of independent	simultaneously.
events and interpret the answers in context.	Consider using Venn Diagrams.

Measurement, Geometry, and Spatial Reasoning

GS.MGSR.1. Compute area and volume of figures by determining how the figure might be obtained from simpler figures by dissection and recombination.

Indicator	Indicator Insight
GS.MGSR.1.1 Apply area and volume	Use two-dimensional and three-dimensional
formulas of two-/three-dimensional figures to	irregular, regular, and composite figures.
solve real-world problems.	
GS.MGSR.1.2 Identify the shape of a two-	Consider including comparison of the figures.
dimensional cross section of a three-	
dimensional figure.	
GS.MGSR.1.3 Use cross sections of three-	Dynamic geometry software should be used
dimensional figures to model and solve	to visualize cross sections of three-
mathematical and real-world situations.	dimensional figures.

8.MGSR.1. Determine the measurements of geometric figures.

Indicator	Indicator Insight
8.MGSR.1.2 Find the distance between any	Use the Pythagorean Theorem to find the
two points in the coordinate plane using the	length of the diagonal line in the coordinate
Pythagorean Theorem.	plane by drawing a right triangle.
8.MGSR.1.3 Given the <i>Pythagorean</i>	The Pythagorean Theorem can be used to find
Theorem, determine unknown side lengths in	any side of the right triangle, not just the
right triangles in mathematical and real-world	hypotenuse.
situations.	
8.MGSR.1.4 Determine if a given set of sides	Identify the pattern in Pythagorean triples.
forms a right triangle.	Use Converse of Pythagorean Theorem.

GS.MGSR.2. Apply rigid geometric transformations to figures describing their attributes and symmetries.

Indicator	Indicator Insight
GS.MGSR.2.1 Describe the results of	Apply rotations, reflections, and translations
transformations on a given figure using	to figures using graph paper, tracing paper,
geometric terminology from the definitions of	and dynamic geometry software. Discuss
the transformations.	orientation and what distinguishes the new
	figure from the original figure.
GS.MGSR.2.2 Describe and apply a sequence	Develop definitions of rotations, reflection,
of transformations that maps a preimage onto	and translation in terms of angles, circles,
its image.	perpendicular lines, parallel lines, and line
	segments.

8.MGSR.2. Determine angle relationships.

Indicator	Indicator Insight
8.MGSR.2.4 Discover and apply the Exterior	Connect to the study of supplementary angles
Angle Theorem of triangles to find a missing	in seventh grade.
angle.	

GS.MGSR.3. Determine that two figures are congruent by demonstrating that a rigid motion or a sequence of rigid motions maps one figure onto the other.

Indicator	Indicator Insight
GS.MGSR.3.1 Identify types of symmetry of	Consider using areas and volumes to show
polygons, including line, point, rotational, and	similarity and symmetry.
self-congruence, and use symmetry to analyze	
mathematical situations.	
GS.MGSR.3.2 Demonstrate that triangles and	Dynamic geometry software can be used to
quadrilaterals are congruent by a combination	demonstrate congruence.
of translations, rotations, and reflections.	
GS.MGSR.3.3 Recognize the criteria for	Justify two triangles are congruent by
showing triangles are congruent using a	applying the side-side-side, Side-Angle-Side,
sequence of rigid motions that map one	Angle-Side-Angle, Angle-Angle-Side, and
triangle to another and justify the two	Hypotenuse-Leg congruence conditions.
triangles are congruent by applying the Side-	Justifications might be supported by sketches
Side-Side, Side-Angle-Side, Angle-Side-Angle,	using dynamic geometry software.
Angle-Angle-Side, and Hypotenuse-Leg	
congruence conditions.	

8.MGSR.3. Graph on a coordinate plane.

Indicator	Indicator Insight
8.MGSR.3.2 Identify congruent angles and	Congruent images should include a single
congruent line segments of a preimage and its	and/or multiple rigid transformations
image.	

GS.MGSR.4. Determine that two figures are similar by demonstrating a similarity transformation or a sequence of similarity transformations that maps one figure onto the other.

Indicator	Indicator Insight
GS.MGSR.4.1 Demonstrate experimentally the properties of dilations given by a center and a scale factor.	Consider using dynamic geometry software to verify and determine similarity. Determine that two figures are similar by demonstrating a similarity transformation, dilation or composite of a dilation with a rigid motion, or equivalently, a sequence of similarity transformations that maps one figure onto the other.
GS.MGSR.4.2 Justify experimentally that a dilation of a line segment is longer or shorter given the ratio.	Justify facts using specific examples. Explore the ratios.
GS.MGSR.4.3 Recognize the criteria for showing triangles are similar using a similarity transformation that maps one figure to the other and justify the two triangles are similar by applying the <i>Angle-Angle, Side-</i> <i>Side-Side, and Side-Angle-Side</i> similarity conditions.	Consider using dynamic geometry software to verify and determine similarity. Determine that two figures are similar by demonstrating a similarity transformation, dilation or composite of a dilation with a rigid motion, or equivalently, a sequence of similarity transformations that maps one figure onto the other.

of algebraic and geometric explanations. Indicator	Indicator Insight
GS.MGSR.5.1 Justify and apply the attributes	Proofs of theorems can sometimes be made
of angle relationships/lines in mathematical and real-world situations.	 with transformations, coordinates, or algebra; all approaches can be useful, and in some cases, one may provide a more accessible or understandable argument than another. Apply in mathematical and real-world contexts when: vertical angles are congruent; a transversal crosses parallel lines, alternate interior angles are congruent, alternate exterior angles are congruent, and consecutive interior angles are supplementary; any point on a perpendicular bisector of a line segment is equidistant from the endpoints of the segment; perpendicular lines form four right angles; and base angles of isosceles triangles are congruent. Define <i>angle, perpendicular line, parallel line, line segment, ray, circle, and skew</i> in terms of the undefined notions of point, line, and plane.
GS.MGSR.5.2 Apply the attributes of	Apply in mathematical and real-world
triangles in mathematical and real-world situations	 situations including but not limited to: segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; and medians of a triangle meet at a point. Define <i>angle, perpendicular line, parallel line, line segment, ray, circle, and skew</i> in terms of the undefined notions of point, line, and plane. Use geometric figures, both physical and within geometry software, to model, represent and describe real-world objects.

GS.MGSR.5. Demonstrate whether a conjecture or theorem is true or false using a variety of algebraic and geometric explanations.

Indicator	Indicator Insight
GS.MGSR.5.3 Apply the attributes of	Proofs of theorems can sometimes be made
quadrilaterals, including diagonals, sides, and	with transformations, coordinates, algebra,
angles, to prove that a given quadrilateral is a	two-column, flow chart or paragraph; all
parallelogram in mathematical and real-world	approaches can be useful, and in some cases,
situations.	one may provide a more accessible or
	understandable argument than another.
	Verify and apply in mathematical and real-
	world situations in which:
	• opposite sides of a parallelogram are
	congruent;
	• opposite angles of a parallelogram are
	congruent;
	• diagonals of a parallelogram bisect
	each other;
	• rectangles are parallelograms with
	congruent diagonals; and
	• parallelogram is a rhombus if and only
	if the diagonals are perpendicular.

GS.MGSR.6. Discover and apply relationships in similar right triangles.

Indicator	Indicator Insight
GS.MGSR.6.1 Discover and apply the	Use visual proofs of the Pythagorean
converse of Pythagorean Theorem.	Theorem.
GS.MGSR.6.2 Discover and apply the	Use the Pythagorean Theorem to derive the
constant ratios of the sides in 30-60-90 and	constant ratios.
45-45-90 right triangles.	
GS.MGSR.6.3 Define the trigonometric ratios	Use a proportion relating corresponding sides
using the properties of similar right triangles.	of right triangles to define sine, cosine, and
	tangent.
GS.MGSR.6.4 Determine the sine, cosine,	Consider examples including but not limited
and tangent of an acute angle in a right	to a ladder against a building, angle of
triangle in the context of mathematical and	elevation, and angle of depression.
real-world situations.	
GS.MGSR.6.5 Apply trigonometric ratios	Use trigonometric ratios and the Pythagorean
(sine, cosine, tangent) and the Pythagorean	Theorem as models of problems in real-world
<i>Theorem</i> to solve right triangles problems in	contexts.
real-world situations.	

G.MGSR.7. Investigate and apply relationships among segments and angles in circles.

Indicator	Indicator Insight
GS.MGSR.7.1 Use angle and segment	Dynamic geometry software should be used
relationships in circles to solve mathematical	to support investigations.
and real-world situations.	

Indicator	Indicator Insight
GS.MGSR.7.2 Investigate and apply	Dynamic geometry software should be used
relationships in circles, including inscribed	to support investigations.
angles, radii, secants, and chords; among	
inscribed angles, central angles, and	
circumscribed angles; and between radii and	
tangents to circles.	

Numerical Reasoning

GS.NR.1. Represent all points on the number line as irrational and rational numbers in the real number system.

Indicator	Indicator Insight
GS.NR.1.1 Rewrite numerical expressions of	Include operations with radicals. This is
irrational and rational numbers involving	students' first introduction to simplifying
radicals, including addition, subtraction,	radicals.
multiplication, and division, to recognize	
geometric patterns.	

Patterns, Algebra, and Functional Reasoning

GS.PAFR.1. Analyze the structure of an equation or inequality to determine an efficient strategy to find a solution, if one exists, then justify the solution.

Indicator	Indicator Insight
GS.PAFR.1.1 Discover and apply the	Use proportions and proportional reasoning to
formulas for the length of an arc and the area	derive formulas.
of a sector in a circle to develop mathematical	
models and solve mathematical and real-	
world problems.	
GS.PAFR.1.2 Analyze and apply the	This indicator builds on the laws of exponents
derivations of the formulas for the	students have learned in middle school.
circumference of a circle, area of a circle, and	
volume of a cylinder, pyramid, and cone to	
model real phenomena and solve	
mathematical and real-world problems.	

8.PAFR.1. Determine if a table, graph, verbal description, or equation represents a function and describe its characteristics.

Indicator	Indicator Insight
8.PAFR.1.5 Use multiple representations	Technology such as spreadsheets for tables
including mappings, tables, graphs, verbal	and graphing tools for graphs is suggested.
description, and equations (only when linear)	
of two functions to compare the functions and	
draw conclusions.	

GS.PAFR.2. Interpret the structure of expressions, equations, and inequalities to analyze and make predictions in different contexts.

Indicator	Indicator Insight
GS.PAFR.2.1 Apply surface area and volume	Include problems that involve algebraic
formulas for prisms, cylinders, pyramids,	expressions, composite figures/solids,
cones, spheres, and/or compositions of figures	geometric probability, and real-world
to solve problems and justify results.	applications as part of the mathematical
	modeling cycle.
GS.PAFR.2.2 Analyze slopes of lines to	Address the occurrence of coincidental lines.
determine whether lines are parallel,	Exploration of parallel and perpendicular
perpendicular, or neither.	lines outside of its connection to shapes and
	transversals is a new concept for students.
GS.PAFR.2.3 Determine the equation of a	Slope-intercept form of a linear equation.
line passing through a given point that is	Solve geometric and real-world problems
parallel or perpendicular to a given line.	involving lines and slopes.

8.PAFR.2. Write, simplify, and evaluate algebraic expressions; write and solve algebraic equations and inequalities.

Indicator	Indicator Insight
8.PAFR.2.2 Describe single-variable	Students need to recognize the three types of
equations as having one solution, no solution,	possible solutions using tables, graphs, or
or an infinite number of solutions.	equations.
8.PAFR.2.4 Explain why the slope, <i>m</i> , is the	Students need to understand that the distance
same between any two distinct points on a	between points on the line are always
linear graph.	proportionally the same.
8.PAFR.2.5 Given a table or a graph, identify	Include multiple symbolic representations.
the slope and the <i>y</i> -intercept of a line and	
write a linear equation to express that line.	

GS.PAFR.3. Determine the exact or approximate solutions of equations and inequalities using graphs on the coordinate plane.

Indicator	Indicator Insight
GS.PAFR.3.1 Use coordinates to prove	Focus on quadrilaterals, right triangles, and
simple geometric theorems algebraically.	circles.
GS.PAFR.3.2 Determine distance and	Eighth grade uses Pythagorean Theorem to
midpoint of segments in a coordinate plane to	find distance in the coordinate plane. Use
find areas of triangles and quadrilaterals when	distance and midpoint formula to find area in
given coordinates.	a coordinate plane.

8.PAFR.3. Apply mathematical patterns, properties, and algorithms to the set of rational numbers to find sums, differences, products, and quotients and to write equivalent expressions.

Indicator	Indicator Insight
8.PAFR.3.1 Analyze patterns of perfect	Look at patterns to make connections to
squares and perfect cubes to evaluate square	geometric squares and cubes. Use tiles, unit
roots and cube roots. Limit to square roots	cubes, and/or centimeter cubes to build
less than or equal to 400 and cube roots less	geometric squares and cubes.
than or equal to 1,000.	
8.PAFR.3.2 Approximate non-perfect square	Use a variety of strategies, including but not
roots and cube roots to nearest tenth. Limit to	limited to manipulatives and number lines, to
square roots less than or equal to 400 and	help build student understanding.
cube roots less than or equal to 1,000.	

Geometry with Statistics Standards

Geometry with Statistics is a newly designed course that builds on the students' experiences in the middle grades. It is the first of four required courses in high school mathematics, providing a common ninth grade experience for all students entering high-school-level mathematics. Geometry with Statistics builds essential concepts necessary for students to meet their postsecondary goals, whether they pursue additional study or enter the workforce, to function as effective citizens, and to recognize the wonder, joy, and beauty of mathematics (NCTM, 2018). It is important because it develops mathematical knowledge and skills through visual representations prior to the more abstract development of algebra.

Beginning high school mathematics with Geometry with Statistics in ninth grade offers students the opportunity to build their reasoning and sensemaking skills, see the applicability of mathematics, and prepare more effectively for further studies in algebra. The course also focuses on statistics in analyzing data, which provides students with tools to describe, show, and summarize data in the world around them.

In Geometry with Statistics, students incorporate knowledge and skills from several mathematics content areas, leading to a deeper understanding of fundamental relationships within the discipline and building a solid foundation for further study. In the content area of Geometry and Measurement, students build on and deepen prior understanding of transformations, congruence, similarity, and coordinate geometry concepts. Informal explorations of transformations provide a foundation for more formal considerations of congruence and similarity, including development of criteria for triangle congruence and similarity. An emphasis on reasoning throughout the content area promotes exploration, conjecture testing, and informal and formal justification. In the content area of Algebra and Functions, students perform algebraic calculations with specific application to geometry that build on foundations of algebra from seventh and eighth grades. Probability is important because it educates one in the logic of uncertainty and randomness, which occur in almost every aspect of daily life. Therefore, studying probability structures will enhance students' ability to organize information and improve decision-making.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the mathematical ideas of others while
		communicating on their own, and they
		can solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why.
		Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Make sense of quantities and their application to relationships in mathematical and real-world representations. Evaluate multiple sources of information from text, charts, tables, graphs, and other diverse media and formats. Students can write explanatory text that conveys their mathematical analyses and thinking. Apply concrete details, relevant facts, and coherent discussions of ideas to support thinking. Decontextualize by pulling information from a given situation, representing it symbolically, then manipulating the representing symbols as if they are their own entities, not necessarily relative to what the symbol stands for. Contextualize by pausing during the manipulation process to explore the meaning of symbols within the given
STRUCTURE &	MDS SD 1 Identify and	situation.
PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Examine, discern, and recognize patterns or structures as complex mathematical objects composed of more than one simple object. Students can attend to detail and continually evaluate the reasonableness of their results. Students can transform more complex structures into something they know. Discern and recognize regularity in repeated reasoning.

Data, Probability, and Statistical Reasoning

GS.DPSR.1. Summarize, represent, and interpret data on two categorical and quantitative
variables.

Indicator	Indicator Insight
GS.DPSR.1.1 Represent data for two	Include linear and nonlinear associations.
quantitative variables on a scatter plot and	
describe how the variables are related.	

Indicator	Indicator Insight
GS.DPSR.1.2 Use two representative points	Use a low-tech approach to identify possible
from the data to find an approximate line of	pairs of points for the approximate line of best
fit and compare it to the line of best fit.	fit.
GS.DPSR.1.3 Conduct an investigation for a	Distinguish statistical questions from other
statistical question, interpret statistical	types of questions.
significance in the context of a situation, and	Compose statistical questions to collect and
answer investigative questions appropriately.	analyze appropriate data to answer the
	statistical investigative question.

GS.DPSR.2. Analyze and interpret models for two quantitative variables.

Indicator	Indicator Insight
GS.DPSR.2.1 Distinguish between correlation	Explore possible reasons for an association:
and causation.	• Predictor causes response,
	• Response causes predictor,
	• Lurking variable, or
	Random occurrence.

GS.DPSR.3. Solve problems involving the probability of compound events in real-world situations.

Indicator	Indicator Insight
GS.DPSR.3.1 Describe categories of events	Consider using Venn Diagrams.
as subsets of a sample space using <i>unions</i> ,	
intersections, or complements of other events.	
GS.DPSR.3.2 Apply the Addition Rule	Consider using Venn Diagrams.
to find the probability of both mutually	
exclusive and not mutually exclusive events	
and interpret the answers in context.	
GS.DPSR.3.3 Apply the Multiplication Rule	Give real-world examples of events occurring
to determine the probability of independent	simultaneously.
events and interpret the answers in context.	Consider using Venn Diagrams.

Measurement, Geometry, and Spatial Reasoning

GS.MGSR.1. Compute area and volume of figures by determining how the figure might be obtained from simpler figures by dissection and recombination.

Indicator	Indicator Insight
GS.MGSR.1.1 Apply area and volume	Use two-dimensional and three-dimensional
formulas of two-/three-dimensional figures to	irregular, regular, and composite figures.
solve real-world problems.	
GS.MGSR.1.2 Identify the shape of a two-	Consider including comparison of the figures.
dimensional cross section of a three-	
dimensional figure.	
GS.MGSR.1.3 Use cross sections of three-	Dynamic geometry software should be used
dimensional figures to model and solve	to visualize cross sections of three-
mathematical and real-world situations.	dimensional figures.

GS.MGSR.2. Apply rigid geometric transformations to figures describing their attributes and symmetries.

Indicator	Indicator Insight
GS.MGSR.2.1 Describe the results of	Apply rotations, reflections, and translations
transformations on a given figure using	to figures using graph paper, tracing paper,
geometric terminology from the definitions of	and dynamic geometry software. Discuss
the transformations.	orientation and what distinguishes the new
	figure from the original figure.
GS.MGSR.2.2 Describe and apply a sequence	Develop definitions of rotations, reflection,
of transformations that maps a preimage onto	and translation in terms of angles, circles,
its image.	perpendicular lines, parallel lines, and line
	segments.

GS.MGSR.3. Determine that two figures are congruent by demonstrating that a rigid motion or a sequence of rigid motions maps one figure onto the other.

Indicator	Indicator Insight
GS.MGSR.3.1 Identify types of symmetry of	Consider using areas and volumes to show
polygons, including line, point, rotational, and	similarity and symmetry.
self-congruence, and use symmetry to analyze	
mathematical situations.	
GS.MGSR.3.2 Demonstrate that triangles and	Dynamic geometry software can be used to
quadrilaterals are congruent by a combination	demonstrate congruence.
of translations, rotations, and reflections.	
GS.MGSR.3.3 Recognize the criteria for	Justifications might be supported by sketches
showing triangles are congruent using a	using dynamic geometry software.
sequence of rigid motions that map one	
triangle to another and justify the two	
triangles are congruent by applying the Side-	
Side-Side, Side-Angle-Side, Angle-Side-Angle,	
Angle-Angle-Side, and Hypotenuse-Leg	
congruence conditions.	

GS.MGSR.4. Determine that two figures are similar by demonstrating a similarity transformation or a sequence of similarity transformations that maps one figure onto the other.

Indicator	Indicator Insight
GS.MGSR.4.1 Demonstrate experimentally	Consider using dynamic geometry software to
the properties of dilations given by a center	verify and determine similarity.
and a scale factor.	Determine that two figures are similar by
	demonstrating a similarity transformation,
	dilation or composite of a dilation with a rigid
	motion, or equivalently, a sequence of
	similarity transformations that maps one
	figure onto the other.

Indicator	Indicator Insight
GS.MGSR.4.2 Justify experimentally that a	Justify facts using specific examples.
dilation of a line segment is longer or shorter	Explore the ratios.
given the ratio.	
GS.MGSR.4.3 Recognize the criteria for	Consider using dynamic geometry software to
showing triangles are similar using a	verify and determine similarity.
similarity transformation that maps one figure	Determine that two figures are similar by
to the other and justify the two triangles are	demonstrating a similarity transformation,
similar by applying the Angle-Angle, Side-	dilation or composite of a dilation with a rigid
Side-Side, and Side-Angle-Side similarity	motion, or equivalently, a sequence of
conditions.	similarity transformations that maps one
	figure onto the other.

GS.MGSR.5. Demonstrate whether a conjecture or theorem is true or false using a variety of algebraic and geometric explanations.

Indicator	Indicator Insight
GS.MGSR.5.1 Justify and apply the attributes	Proofs of theorems can sometimes be made
of angle relationships/lines in mathematical	with transformations, coordinates, or algebra;
and real-world situations.	all approaches can be useful, and in some
	cases, one may provide a more accessible or
	understandable argument than another.
	Apply in mathematical and real-world
	contexts when:
	• vertical angles are congruent;
	• a transversal crosses parallel lines,
	alternate interior angles are congruent,
	alternate exterior angles are congruent,
	and consecutive interior angles are
	supplementary;
	• any point on a perpendicular bisector
	of a line segment is equidistant from
	the endpoints of the segment;
	• perpendicular lines form four right
	angles; and
	• base angles of isosceles triangles are
	congruent.
	Define angle, perpendicular line, parallel
	line, line segment, ray, circle, and skew in
	terms of the undefined notions of point, line,
	and plane.

Indicator	Indicator Insight
Indicator GS.MGSR.5.2 Apply the attributes of triangles in mathematical and real-world situations	 Indicator Insight Apply in mathematical and real-world situations including but not limited to: segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; and medians of a triangle meet at a point. Define angle, perpendicular line, parallel line, line segment, ray, circle, and skew in terms of the undefined notions of point, line, and plane. Use geometric figures, both physical and
	within geometry software, to model, represent and describe real-world objects.
GS.MGSR.5.3 Apply the attributes of quadrilaterals, including diagonals, sides, and angles, to prove that a given quadrilateral is a parallelogram in mathematical and real-world situations.	 Proofs of theorems can sometimes be made with transformations, coordinates, algebra, two-column, flow chart or paragraph; all approaches can be useful, and in some cases, one may provide a more accessible or understandable argument than another. Verify and apply in mathematical and real-world situations in which: opposite sides of a parallelogram are congruent; opposite angles of a parallelogram are congruent; diagonals of a parallelogram bisect each other; rectangles are parallelograms with congruent diagonals; and parallelogram is a rhombus if and only if the diagonals are perpendicular.

GS.MGSR.6. Discover and apply relationships in similar right triangles.

Indicator	Indicator Insight
GS.MGSR.6.1 Discover and apply the	Use visual proofs of the Pythagorean
converse of Pythagorean Theorem.	Theorem.
GS.MGSR.6.2 Discover and apply the	Use the Pythagorean Theorem to derive the
constant ratios of the sides in 30-60-90 and	constant ratios.
45-45-90 right triangles.	
GS.MGSR.6.3 Define the trigonometric ratios	Use a proportion relating corresponding sides
using the properties of similar right triangles.	of right triangles to define sine, cosine, and
	tangent.

Indicator	Indicator Insight
GS.MGSR.6.4 Determine the sine, cosine,	Consider examples including but not limited
and tangent of an acute angle in a right	to a ladder against a building, angle of
triangle in the context of mathematical and	elevation, and angle of depression.
real-world situations.	
GS.MGSR.6.5 Apply trigonometric ratios	Use trigonometric ratios and the Pythagorean
(sine, cosine, tangent) and the <i>Pythagorean</i>	Theorem as models of problems in real-world
<i>Theorem</i> to solve right triangles problems in	contexts.
real-world situations.	

GS.MGSR.7. Investigate and apply relationships among segments and angles in circles.

Indicator	Indicator Insight
GS.MGSR.7.1 Use angle and segment	Dynamic geometry software should be used
relationships in circles to solve mathematical	to support investigations.
and real-world situations.	
GS.MGSR.7.2 Investigate and apply	Dynamic geometry software should be used
relationships in circles, including inscribed	to support investigations.
angles, radii, secants, and chords; among	
inscribed angles, central angles, and	
circumscribed angles; and between radii and	
tangents to circles.	

Numerical Reasoning

GS.NR.1. Represent all points on the number line as irrational and rational numbers in the real number system.

Indicator	Indicator Insight
GS.NR.1.1 Rewrite numerical expressions of	Include operations with radicals. This is
irrational and rational numbers involving	students' first introduction to simplifying
radicals, including addition, subtraction,	radicals.
multiplication, and division, to recognize	
geometric patterns.	

Patterns, Algebra, and Functional Reasoning

GS.PAFR.1. Analyze the structure of an equation or inequality to determine an efficient strategy to find a solution, if one exists, then justify the solution.

Indicator	Indicator Insight
GS.PAFR.1.1 Discover and apply the	Use proportions and proportional reasoning to
formulas for the length of an arc and the area	derive formulas.
of a sector in a circle to develop mathematical	
models and solve mathematical and real-	
world problems.	

Indicator	Indicator Insight
GS.PAFR.1.2 Analyze and apply the	This indicator builds on the laws of exponents
derivations of the formulas for the	students have learned in middle school.
circumference of a circle, area of a circle, and	
volume of a cylinder, pyramid, and cone to	
model real phenomena and solve	
mathematical and real-world problems.	

GS.PAFR.2. Interpret the structure of expressions, equations, and inequalities to analyze and make predictions in different contexts.

Indicator	Indicator Insight
GS.PAFR.2.1 Apply surface area and volume	Include problems that involve algebraic
formulas for prisms, cylinders, pyramids,	expressions, composite figures/solids,
cones, spheres, and/or compositions of figures	geometric probability, and real-world
to solve problems and justify results.	applications as part of the mathematical
	modeling cycle.
GS.PAFR.2.2 Analyze slopes of lines to	Address the occurrence of coincidental lines.
determine whether lines are parallel,	Exploration of parallel and perpendicular
perpendicular, or neither.	lines outside of its connection to shapes and
	transversals is a new concept for students.
GS.PAFR.2.3 Determine the equation of a	Slope-intercept form of a linear equation.
line passing through a given point that is	Solve geometric and real-world problems
parallel or perpendicular to a given line.	involving lines and slopes.

GS.PAFR.3. Determine the exact or approximate solutions of equations and inequalities using graphs on the coordinate plane.

Indicator	Indicator Insight
GS.PAFR.3.1 Use coordinates to prove	Focus on quadrilaterals, right triangles, and
simple geometric theorems algebraically.	circles.
GS.PAFR.3.2 Determine distance and	Eighth grade uses Pythagorean Theorem to
midpoint of segments in a coordinate plane to	find distance in the coordinate plane. Use
find areas of triangles and quadrilaterals when	distance and midpoint formula to find area in
given coordinates.	a coordinate plane.

Algebra 1 Standards

Algebra 1 builds essential concepts necessary for students to meet their postsecondary goals; whether they pursue additional study or enter the workforce. This can result in helping students to function as effective citizens, and to recognize the wonder, joy, and beauty of mathematics (NCTM, 2018). Algebra is important and useful in most careers. It is one of the most common and malleable types of mathematics, because it is valuable in a range of activities from ordinary decision-making to advanced training in scientific and technological fields. The ability to understand and apply algebraic thinking is a crucial stepping stone on a successful journey in life. Algebra is a collection of unifying concepts that enable one to solve problems flexibly.

The study of algebra is inextricably linked to the study of functions, which are fundamental objects in mathematics that model many life situations involving change. This course provides experiences for students to see how mathematics can be used systematically to represent patterns and relationships among numbers and other objects, analyze change, and model everyday events and problems of life and society.

Algebra 1 emphasizes functions including linear (as introduced in seventh and eighth grades), absolute value, quadratic, and exponential, and functions as explicit and recursive. Properties of algebra are applied to convert between forms of expressions and to solve equations.

Graphing is a vital component of study in Algebra 1. Graphs of equations and inequalities consist of all points (discrete or continuous) whose ordered pairs satisfy the relationship within the domain and range. Students find points of intersection between two graphed functions that correspond to the solutions of the equations of the two functions, and transform graphs of functions (through translation, reflection, rotation, and dilation) by performing operations on the input or output.

Algebra 1 serves as a study of linear, quadratic, exponential, and absolute value functions. Equations and expressions with linear and quadratic terms are also studied to learn how algebraic expressions model real-world situations. Statistical reasoning is studied to learn how data is represented and interpreted and how models, particularly linear, can be used to make predictions.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why.
		Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Make sense of quantities and their application to relationships in mathematical and real-world representations. Evaluate multiple sources of information from text, charts, tables, graphs, and other diverse media and formats. Students can write explanatory text that conveys their mathematical analyses and thinking. Apply concrete details, relevant facts, and coherent discussions of ideas to support thinking. Decontextualize by pulling information from a given situation, representing it symbolically, then manipulating the representing symbols as if they are their own entities, not necessarily relative to what the symbol stands for. Contextualize by pausing during the manipulation process to explore the
		meaning of symbols within the given situation.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Examine, discern, and recognize patterns or structures as complex mathematical objects composed of more than one simple object. Students can attend to detail and continually evaluate the reasonableness of their results. Students can transform more complex structures into something they know. Discern and recognize regularity in repeated reasoning.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
A1.DPSR.1.1 Summarize categorical data in	Include joint, marginal, and conditional
two-way frequency tables, interpret relative	relative frequencies.
frequencies in real-world situations, and	
informally determine possible associations	
and trends in the data.	
A1.DPSR.1.2 Summarize quantitative data in	Description must include:
a table and on a scatter plot and describe how	• direction - positive or negative; and
the variables are associated. Limit to linear	• association - none, weak, moderate, or
data.	strong.
A1.DPSR.1.3 Find a linear function for a	Use technology to assist with finding the line
scatter plot that suggests a linear association.	of best fit for two quantitative variables. Use
	the given model or choose a model suggested
	by the shape of the graph. Explore
	interpolation and extrapolation. Discuss the
	dangers of extrapolation.
A1.DPSR.1.4 For linear associations, use	Use technology or statistical software to assist
technology to determine the correlation	in finding linear associations.
coefficient, evaluate the strength of the	
association, and find the line of best fit.	

A1.DPSR.1. Use successive approximations as a method to solve the system y = f(x) and y = g(x) to find approximate solutions with graphs and tables.

Indicator	Indicator Insight
A1.DPSR.2.1 Use two-way frequency tables	Use relative frequencies to identify possible
to make inferences and interpret the data in	associations.
terms of real-world or mathematical	
situations.	
A1.DPSR.2.2 Interpret the slope and the	Interpret slope as a unit rate of change
intercept of a linear model in the context of	(including units).
the data.	For every one unit of increase in the x
	variable, the y variable will increase or
	decrease the amount and the direction of the
	slope.
	The <i>y</i> -intercept of a linear model may not
	make sense when interpreted within the
	context of the data.
A1.DPSR.2.3 Use a linear model to	Use technology or statistical software.
interpolate and extrapolate unknown values	Correlation applies to linear models only.
close to the data set.	

Measurement, Geometry, and Spatial Reasoning

mathematical and real-world situations.	
Indicator	Indicator Insight
A1.MGSR.1.1 Identify any limitations	Produce a graph for a contextual situation and
specific to a real-world situation.	determine a scale that shows key features of
	the graph.
	Limitations might include measuring to the
	nearest cent or dollar or whole unit, such as
	people or cars, when a fraction does not make
	sense.

A1.MGSR.1. Use geometric concepts and measurement opportunities to model mathematical and real-world situations.

Numerical Reasoning

A1.NR.1. Represent all points on the number line as irrational and rational numbers in the real number system.

Indicator	Indicator Insight
A1.NR.1.1 Rewrite numerical and algebraic	Include all operations with algebraic
expressions of irrational and rational numbers	expressions with emphasis on rational and
involving radicals, including addition,	radical terms.
subtraction, multiplication, and division.	
Limit to square and cube roots.	

A1.NR.2. Represent exponents and radical expressions in different ways.

Indicator	Indicator Insight
A1.NR.2.1 Translate between rational	Limit the number of variables to five or less.
exponents and radical expressions of	
irrational and rational numbers. Use	
properties of addition, subtraction,	
multiplication, and division to simplify	
radical and rational expressions. Limit to	
square and cube roots.	

Patterns, Algebra, and Functional Reasoning

A1.PAFR.1. Transform and/or solve equations and expressions in one variable that model real-world and mathematical problems, interpret the solutions, and determine whether they are reasonable.

Indicator	Indicator Insight
A1.PAFR.1.1 Transform an equation in one	Linear forms include standard, intercept, y-
variable to create new equations that have the	intercept, and point-slope. Quadratic forms
same solution as the original and justify the	include vertex, standard, and factored.
steps taken.	Limit exponential to the same bases.

Indicator	Indicator Insight
A1.PAFR.1.2 Solve literal equations and	The process of solving literal equations
formulas for a specified variable including	should incorporate similar strategies used in
equations and formulas that arise in a variety	solving for unknown numerical quantities.
of disciplines.	
A1.PAFR.1.3 Solve mathematical and real-	The steps used for solving an equation should
world problems using linear, quadratic,	be identified as a justification for the solution
exponential (same bases), and linear absolute	process.
value equations in one variable.	
A1.PAFR.1.4 Add, subtract, and multiply	When performing operations with
polynomials with initial terms up to a degree	polynomials, relate to the properties of
of 2.	equality.

A1.PAFR.2. Create, solve, and transform equations and inequalities in two or more variables to represent relationships between quantities and graph the equations on coordinate axes using appropriate labels, units, and scales.

coordinate axes using appropriate labels, units, and scales.		
Indicator	Indicator Insight	
A1.PAFR.2.1 Transform linear, quadratic,	Determine which equation is used to identify	
exponential, and linear absolute value	the information.	
functions to equivalent forms to identify slope	Fluently transform quadratic functions into	
and <i>y</i> -intercept for linear, vertex and roots (if	multiple forms.	
any) for quadratic and linear absolute value,	Fluently transform exponential functions	
and y-intercept for exponential.	using growth and decay models.	
A1.PAFR.2.2 Solve quadratic equations by	Completing the square may include a visual	
completing the square, factoring, and the	model such as algebra tiles.	
quadratic formula, explaining the connection	Quadratic equations that result in negative	
between the zeros of the function derived	numbers underneath the square root are	
from the equation, its linear factors (if it	determined to have no solutions in the real	
factors), the <i>x</i> -intercepts of its graph (if they	number system.	
exist), and the solutions (if any) to the		
corresponding quadratic equation.		
A1.PAFR.2.3 Solve and graph linear,	Tabular form should involve a spreadsheet.	
quadratic, exponential, and linear absolute		
value equations given in tabular, symbolic,		
and/or verbal forms using intercepts, domain		
and range, intervals of increasing and		
decreasing, vertex (maximum and minimum),		
end behavior, and symmetry, and interpret		
these in terms of mathematical and real-world		
situations.		
A1.PAFR.2.4 Create, solve, and graph linear	Inequalities are used to solve contextual	
inequalities in two variables.	problems.	

Indicator	Indicator Insight
A1.PAFR.2.5 Write arithmetic and geometric	Use contextual situations and sets of ordered
sequences both recursively and with an	pairs to create functions to describe
explicit formula, use them to model	relationships.
situations, and translate between the two	
forms.	
A1.PAFR.2.6 Create symbolic representations	When given an addition/subtraction pattern or
of linear and exponential functions, including	a multiplication/division sequence, generalize
arithmetic and geometric sequences, given	an arithmetic or geometric sequence; create
graphs, verbal descriptions, and tables.	both explicit and recursive functions for the
	pattern.
	Connect exponential functions and geometric
	sequences.
A1.PAFR.2.7 Use graphs to obtain exact	A possible strategy to use successive
and/or approximate solutions of equations,	approximations as a method to solve the
inequalities, and systems of linear equations	system $y = f(x)$ and $y = g(x)$ to find
in two variables (given or obtained by using	approximate solutions with graphs and tables.
technology).	
A1.PAFR.2.8 Solve an equation of the form	The <i>x</i> -coordinate(s) of the point(s) where the
f(x) = g(x) graphically by identifying the x-	graphs of the equations $y = f(x)$ and $y = g(x)$
coordinate(s) of the point(s) of intersection of	intersect are the solution(s) of the equation
the graphs of $y = f(x)$ and $y = g(x)$.	f(x) = g(x) .
A1.PAFR.2.9 Solve systems of linear	Solving algebraically means using linear
equations algebraically and graphically.	combinations (elimination) and substitution.
	Teachers are encouraged to teach solving
A1 DAED 2 10 Analyze the analyth / Jacoby rate	equations collectively, not in isolation.
A1.PAFR.2.10 Analyze the growth/decay rate	Demonstrate that linear functions grow by equal differences over equal intervals and that
between linear and exponential functions specifically between consecutive integers.	equal differences over equal intervals and that exponential functions grow by equal factors
specifically between consecutive integers.	over equal intervals.
	Use graphs and tables to recognize that a
	quantity increasing exponentially eventually
	exceeds a quantity increasing linearly.
	encous a quantity moreasing initiarity.

A1.PAFR.3. Represent and interpret functions symbolically and graphically.

Indicator	Indicator Insight
A1.PAFR.3.1 Recognize that $f(x)$ denotes the	Function notation reveals both the input and
output of function f that corresponds to the	output in a single statement.
input <i>x</i> , and this corresponds to the set of all	Connect the statements "the graph of f " and
the ordered pairs (x, y) that satisfy the	"the graph of $y = f(x)$."
equation $y = f(x)$ both tabularly and	
graphically.	

Indicator	Indicator Insight
A1.PAFR.3.2 Use the definition of a function	Tabular representation may be done using a
to analyze the domain and range of a function	spreadsheet.
in relation to its graph, mapping, table, verbal,	
and/or symbolic description, and where	
applicable, using interval and set notation.	
A1.PAFR.3.3 Translate among graphical,	A computer algebra system may be used for
tabular, verbal, and symbolic representations	translating among the different
in function notation to identify intercepts,	representations.
intervals where the function is increasing,	
decreasing, constant, maximums and	
minimums, and symmetries and explain their	
meanings in real-world and mathematical	
situations.	
A1.PAFR.3.4 Interpret how lead coefficients	Relate the value of the coefficients to
impact the shape of a function's graph.	geometric transformations.

A1.PAFR.4. Reason with parent functions in varying representations to find families of functions that all have similar distinguishing attributes common to the family and use common characteristics to aid in rewriting and identifying linear, linear absolute value, quadratic, and exponential functions.

Indicator	Indicator Insight
A1.PAFR.4.1 Describe the effect of the	Use technology with a parent function to
transformations $kf(x)$, $f(x)+k$, $f(x+k)$, and	explore the results when different
combinations of such transformations on the	transformations, translations, reflections, and
graph of parent function $y = f(x)$ for any real	dilations, are applied.
number k , find the value of k given the	
graphs, and write the equation of a	
transformed parent function given its graph.	
A1.PAFR.4.2 Given a real-world or	Consider rates of change, graphs, context, or a
mathematical situation, determine the parent	table of values to determine if a function is
graph that best models the situation.	linear, exponential, or quadratic.
A1.PAFR.4.3 Given different representations	Flexibly use different representations of
of two different functions, compare key	functions, including graphs, tables, verbal,
features including intercepts, domain and	and symbols, to compare key features of the
range, intervals of increasing and decreasing,	functions.
constant, average rate of change, and	
maximum and minimum values.	

Algebra 2 with Probability Standards

Algebra 2 is a course designed for students seeking access to higher levels of mathematics after completing Geometry and Algebra 1. Algebra 2 serves to deepen understanding and intuition about a wide variety of functions like polynomial, rational, radical, exponential, and piecewise. Building on principles learned from Geometry and Algebra 1, the purpose of this course is to graphically investigate and compare functions, analyze rates of change, and determine solutions of "real-world" problems at a higher conceptual level than can be achieved algebraically. In this document, many of the instructional considerations recommend the use of a graphing calculator or a computer algebra system to enable students to visualize mathematics and increase their conceptual understanding. With this said, National Council of Teachers of Mathematics's *Catalyzing Change in High School Mathematics* states:

Careful consideration needs to be given to when and how technology can be used to <u>shift</u> the focus <u>from</u> learning many individual procedures for algebra <u>to</u> considering multiple equivalent forms of expressions and equations, interpreting the results of manipulations, and making strategic choices about which forms of an expression or equation to use. (p. 47)

In addition to increasing student knowledge of "parent functions," Algebra 2 also includes the study of complex numbers, matrices, and probability. The study of complex numbers introduces students to the complex number system and its impact on solutions of equations. Matrices provide a method for students to organize, store, and mathematically work with large amounts of data. Algebra 2 will concentrate on using small data sets. Finally, the study of probability will continue the study of data, probability, and statistical reasoning units that began in Geometry. Finding the likelihood of an event occurring enables students, bombarded with data, to make more informed decisions.

Prerequisite courses: Geometry > Algebra 1

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why. Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Make sense of quantities and their application to relationships in mathematical and real-world representations. Evaluate multiple sources of information from text, charts, tables, graphs, and other diverse media and formats. Students can write explanatory text that conveys their mathematical analyses and thinking. Apply concrete details, relevant facts, and coherent discussions of ideas to support thinking. Decontextualize by pulling information from a given situation, representing it symbolically, then manipulating the representing symbols as if they are their own entities, not necessarily relative to what the symbol stands for. Contextualize by pausing during the manipulation process to explore the
		meaning of symbols within the given situation.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Examine, discern, and recognize patterns or structures as complex mathematical objects composed of more than one simple object. Students can attend to detail and continually evaluate the reasonableness of their results. Students can transform more complex structures into something they know. Discern and recognize regularity in repeated reasoning.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
A2P.DPSR.1.1 Describe events as subsets of	Use symbolic representations of union and
a sample space using characteristics or	intersection, including but not limited to Venn
categories of the outcomes, or as <i>unions</i> ,	Diagrams.
intersections, or complements of other events.	
A2P.DPSR.1.2 Explain whether two events,	Use tree diagrams or two-way tables.
A and B, are independent if and only if the	
probability of A and B occurring together is	
the product of their probabilities and use this	
characterization to determine if they are	
independent.	
A2P.DPSR.1.3 Determine whether the	Use conditional probability to show that two
conditional probability of A given B as P(A	events are independent in mathematical and
and $B)/P(B)$, and interpret independence of A	real-world situations.
and B as saying that the conditional	
probability of A given B is the same as the	
probability of A, and the conditional	
probability of B given A is the same as the	
probability of B in mathematical and real-	
world situations.	
A2P.DPSR.1.4 Recognize and explain the	Use everyday language and situations.
concepts of conditional probability and	
independence.	

A2P.DPSR.1. Understand independence and conditional probability and use them to interpret data.

A2P.DPSR.2. Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Indicator	Indicator Insight
A2P.DPSR.2.1 Find the conditional	Provide opportunities to build understanding
probability of A given B as the fraction of B's	that $P(A B)$ represents the outcomes
outcomes that also belong to A and interpret	remaining for A to occur once B has already
the answer in terms of the model.	occurred. This is a fraction of outcomes of B
	that also belongs to A.
A2P.DPSR.2.2 Apply the Addition Rule, P(A	Explore disjoint or mutually exclusive events.
or B) = $P(A) + P(B) - P(A \text{ and } B)$ and	
interpret the answer in terms of the model.	
A2P.DPSR.2.3 Apply the general	Explore and provide clarification among
Multiplication Rule in a uniform probability	uniform and nonuniform probability models.
model, $P(A \text{ and } B) = P(A) \cdot P(B A) =$	In a uniform probability model, all events
$P(B) \cdot P(A B)$ and interpret the answer in terms	possess an equal chance of occurring.
of the model.	

Indicator	Indicator Insight
A2P.DPSR.2.4 Use permutations and	Consider using technology to determine the
combinations to determine the number of	number of possible outcomes.
possible outcomes in a sample space.	

Measurement, Geometry, and Spatial Reasoning

A2P.MGSR.1. Explore and analyze sine and cosine functions using the unit circle, right triangle definitions and models of periodic phenomena.

Indicator	Indicator Insight
A2P.MGSR.1.1 Build the unit circle for sine	Use radian measure.
and cosine functions using right triangle	Use the unit circle and right triangle
definitions.	definitions to evaluate sine and cosine for the
	following angles and their multiples from 0 to
	2: 0, $\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \text{ and } \frac{\pi}{2}$.
A2P.MGSR.1.2 Use models of periodic	This indicator is students' first introduction to
phenomena to evaluate and analyze the graph	the unit circle. Students are only expected to
of sine and cosine functions.	evaluate and analyze graph of sine and cosine
	functions, not graph or transform graphs.

Numerical Reasoning

A2P.NR.1. Recognize that the complex number system extends the real number system to allow for solution to all polynomial equations.

Indicator	Indicator Insight
A2P.NR.1.1 Understand that there is an	Refer to the number system hierarchy.
imaginary unit <i>i</i> such that $i^2 = -1$ and explain	
the structure of a complex number as $a + bi$,	
where <i>a</i> and <i>b</i> are real.	
A2P.NR.1.2 Add, subtract, and multiply	Simplify powers of <i>i</i> .
complex numbers.	

A2P.NR.2. Represent and manipulate data using matrices.

Indicator	Indicator Insight
A2P.NR.2.1 Perform operations with matrices	This is the introduction of matrices. Use only
including addition, subtraction, and scalar	two-by-two. For real-world applications,
multiplication.	consider using technology.

Patterns, Algebra, and Functional Reasoning

and use them to model real-world situations.	Indicator Insight
Indicator	Indicator Insight
A2P.PAFR.1.1 Graph, identify roots, and	Solve quadratic equations in one variable that
analyze quadratic functions in mathematical	have complex solutions.
and real-world situations.	
A2P.PAFR.1.2 Solve quadratic inequalities	For real-world applications, consider using
that model mathematical and real-world	technology such as a graph or a computer
situations.	algebra system.
A2P.PAFR.1.3 Graph and analyze	Identify the number of zeros that exist for any
polynomial functions in mathematical and	polynomial based upon the greatest degree
real-world situations.	and the end behavior of the polynomial by
	observing the sign of the leading coefficient.
	Identify the zeros of polynomial functions and
	their multiplicities to construct a graph using
	key features of these polynomial functions.
	Refer to A2P.PAFR.4.1.
	Key features of polynomial functions include:
	intercepts and their multiplicity, end behavior,
	domain and range, intervals of increase and/or
	decrease, intervals where the function is
	positive and/or negative.
	Discuss multiplicity and its relationship to the
	graph's behavior at these intercepts.
	To state key intervals, use interval and set
	notation.
	Using all the zeros of a polynomial function,
	list and multiply all the factors to write a
	multiple of the polynomial function in
	standard form for no more than degree 4.
	Divide polynomials using technology. Relate the Remainder and Factor Theorems to
	the process of division of polynomials.
	The division of polynomials leads to the
	discussion of rational expressions.
	For real-world applications, consider using
ADDAED 1 4 Solve polynomial incorrelition	technology.
A2P.PAFR.1.4 Solve polynomial inequalities that model mathematical and real-world	For real-world applications, consider using
situations.	technology.
A2P.PAFR.1.5 Recognize perfect squares and	Consider using technology to relate the zeros.
perfect cubes and use them to describe the	Discuss the graphical connections.
structure of polynomials.	
charter of polynomials.	

A2P.PAFR.1. Explore and analyze quadratic and polynomial functions and inequalities and use them to model real-world situations.

Indicator	Indicator Insight
A2P.PAFR.2.1 Graph rational and radical	Refer to A2P.PAFR.4.1
functions and describe their key features.	Key features of rational and radical functions
Limit to square roots and cube roots only.	include: intercepts, horizontal and vertical
	asymptotes (rational), domain, range,
	intervals of increase and decrease, and end
	behavior.
	To state key intervals, use interval and set
	notation.
	For real-world applications, consider using
	technology.
A2P.PAFR.2.2 Perform arithmetic operations	For real-world applications, consider using
on rational expressions, including problems in	technology.
context and express rational expressions in	
irreducible form.	
A2P.PAFR.2.3 Create and solve rational and	For real-world applications, consider using
radical equations in one variable, including	technology.
those that model real-world situations and	
verify solutions to identify extraneous	
solutions if they appear.	

A2P.PAFR.2. Explore and analyze rational and radical functions and use them to model real-world phenomena.

A2P.PAFR.3. Explore and analyze exponential functions and use them to model real-world phenomena.

Indicator	Indicator Insight
A2P.PAFR.3.1. Create, solve, and graph	For real-world applications, consider using
exponential functions, including those that	technology.
model real-world situations.	Introduce and incorporate <i>e</i> .
	Refer to A2P.PAFR.4.1.
A2P.PAFR.3.2 Find the sum of the terms of	Arithmetic: Use student knowledge of linear
arithmetic and geometric sequences.	functions to derive the "formula."
	Geometric: Use student knowledge of
	exponential functions to derive the "formula."

A2P.PAFR.4. Reason with parent functions to find families of functions that all have similar distinguishing attributes common to the family, and use common characteristics to aid in rewriting and identifying functions.

Indicator	Indicator Insight
A2P.PAFR.4.1 Identify the effect on the	Use graphing technology/computer algebra
graph of replacing $f(x)$ by $kf(x)$, $f(x)+k$,	systems to explore transformations.
f(x+k), and $f(kx)$ for any real number k	
including multiple transformations; write an	
equation of a transformed parent function	
given its graph. (Extend to equations	

Indicator	Indicator Insight
involving rational, polynomial, radical,	
exponential, and piecewise.)	

A2P.PAFR.5. Explore and analyze piecewise functions and linear absolute value inequalities and use them to model real-world phenomena.

Indicator	Indicator Insight
	6
A2P.PAFR.5.1 Graph piecewise functions	Evaluate a piecewise function at given
and describe their key features.	elements of the domain.
	Key features of piecewise functions include:
	domain, range, end behavior, intercepts,
	intervals of increase and decrease, and
	interval where the function is positive and/or
	negative.
	Refer to A2P.PAFR.4.1.
	Model real-world problems with piecewise-
	defined functions that incorporate constant,
	linear, quadratic, and exponential functions.
	For real-world applications, consider using
	technology.
A2P.PAFR.5.2 Solve linear absolute value	Use the distance definition to define and solve
inequalities.	linear absolute value inequalities.
	For real-world applications, consider using
	technology.

A2P.PAFR.6. Represent and interpret functions symbolically and graphically.

Indicator	Indicator Insight
A2P.PAFR.6.1 Find the inverse of functions	Function composition is not introduced until
and verify graphically.	Pre-Calculus; therefore, students cannot
	verify algebraically at this point.
	Discuss the identity function and its
	importance in graphically verifying inverses.
	Use technology.
A2P.PAFR.6.2 Calculate and interpret the	Explore the rate of change between different
average rate of change of the function over a	points and recognize that the average rate of
specified interval, given a function in	change is not constant, as it is for linear
graphical, symbolic, or numerical form.	functions.
A2P.PAFR.6.3 Use linear programming to	For real-world applications, consider using
solve systems of equations and inequalities by	technology.
addressing the constraints that arise in real-	
world situations.	

Pre-Calculus Standards

In South Carolina College- and Career-Ready (SC CCR) Pre-Calculus, students build on the conceptual knowledge and skills for mathematics they mastered in previous mathematics courses and construct a foundation necessary for subsequent mathematical study. The standards for those courses provide students with a foundation in the theory of functions, roots and factors of polynomials, exponential and logarithmic functions, the complex number system, and an introduction to trigonometry.

In this course, students are expected to apply mathematics in meaningful ways to solve problems that arise in the workplace, society, and real-world situations through the process of modeling. Mathematical modeling involves creating appropriate equations, graphs, functions, or other mathematical representations to analyze real-world situations and answer questions. The use of technological tools, such as handheld graphing calculators, is important in creating and analyzing mathematical representations used in the modeling process and should be used during instruction and assessment. However, technology should not be limited to handheld graphing calculators. Students should use a variety of technologies, such as graphing utilities, spreadsheets, and computer algebra systems to solve problems and to master standards in all strands of this course.

Pre-Calculus serves as a study of piecewise, rational, radical, exponential, logarithmic, and trigonometric functions. Furthermore, the course addresses the study of polar coordinates, conic sections, vectors, and matrices. Mathematical modeling for solving real-world problems and the use of technological tools such as computer algebra systems and spreadsheets are integrated into the instructional approaches for addressing the standards.

Prerequisite courses: Geometry > Algebra 1 > Algebra 2

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why.
		Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
JUSTIFY	thinking skills to reason	application to relationships in
	both abstractly and	mathematical and real-world
	quantitatively.	representations.
		Evaluate multiple sources of
		information from text, charts, tables,
		graphs, and other diverse media and
		formats.
		Students can write explanatory text that
		conveys their mathematical analyses
		and thinking. Write explanatory text that conveys
		their mathematical analyses and
		thinking.
		Apply concrete details, relevant facts,
		and coherent discussions of ideas to
		support thinking.
		Decontextualize by pulling information
		from a given situation, representing it
		symbolically, then manipulating the
		representing symbols as if they are their
		own entities, not necessarily relative to
		what the symbol stands for.
		Contextualize by pausing during the
		manipulation process to explore the
		meaning of symbols within the given situation.
STRUCTURE &	MPS.SP.1 Identify and	Examine, discern, and recognize
PATTERNS	apply regularity in	patterns or structures as complex
	repeated reasoning to	mathematical objects composed of
	make generalizations.	more than one simple object.
	8	Students can attend to detail and
		continually evaluate the reasonableness
		of their results.
		Students can transform more complex
		structures into something they know.
		Discern and recognize regularity in
		repeated reasoning.

Measurement, Geometry, and Spatial Reasoning

Indicator	Indicator Insight
PC.MGSR.1.1 Identify and graph different	Explore circles, parabolas, ellipses, and
conic sections given the equations in standard	hyperbolas.
form.	
PC.MGSR.1.2 Identify different conic	Investigate orbital paths, whispering galleries,
sections in general form and complete the	satellite dishes, etc.
square to convert the equation of a conic	
section into standard form.	
PC.MGSR.1.3 Define polar coordinates and	Connect the trigonometric function in the
relate polar coordinates to Cartesian	Cartesian Plane to the corresponding polar
coordinates.	function in the Polar Plane.
	Use graphing technology.

PC.MGSR.1. Analyze the behaviors of conic sections and polar coordinates to model mathematical and real-world problems.

PC.MGSR.2. Solve problems and model periodic phenomena with trigonometric expressions and functions.

Indicator	Indicator Insight
PC.MGSR.2.1 Determine the area of a	Use Heron's Formula when given the length
triangle to solve problems.	of sides.
PC.MGSR.2.2 Prove and apply the <i>Law of</i>	Consider investigating surveying problems,
Sines and the Law of Cosines to find unknown	resultant forces, etc.
measurements in right and non-right triangles	
PC.MGSR.2.3 Derive the formulas for the	Convert between degree and radian measures.
length of an arc and the area of a sector in a	Develop the radian measure of the quadrantal
circle and apply these formulas to solve	angles.
mathematical and real-world problems.	Work with radian measures that are in terms
	of π and those not in terms of π .
PC.MGSR.2.4 Determine geometrically the	Connect the radian angle names on the 17-
values of the sine, cosine, and tangent for $\pi/6$,	point unit circle to portions of 2π radians.
$\pi/4$, and $\pi/3$ by special triangles, and use the	Use radian measures corresponding to
unit circle to express the values of sine,	reference angles $\pi/6$, $\pi/4$, and $\pi/3$.
cosine, and tangent for $\pi - x$, $\pi + x$, and $2\pi - $	
x in terms of their values for x , where x is any	
real number.	
PC.MGSR.2.5 Define the six trigonometric	Utilize the parametric interpretation of the
ratios in terms of <i>x</i> , <i>y</i> , and <i>r</i> using the unit	coordinates on the unit circle as $(\cos(t),$
circle centered at the origin of the coordinate	$\sin(t)$).
plane and interpret radian measures of angles	
as a rotation, both counterclockwise and	
clockwise around the unit circle.	
PC.MGSR.2.6 Explain symmetry, both odd	Investigate by using the unit circle and the
and even, and periodicity of trigonometric	graphical representations of the trigonometric
functions.	functions.

Numerical Reasoning

Indicator	Indicator Insight
PC.NR.1.1 Identify the identity and zero	Includes identity and zero matrix.
matrices for any dimension and add, subtract, and multiply matrices.	Recognize that matrix multiplication is not commutative.
	Perform operations with matrices of
	appropriate dimensions including addition,
	subtraction, and scalar multiplication for
	matrices greater than two-by-two.
PC.NR.1.2 Find the additive and	Use technology as appropriate.
multiplicative inverses of square matrices.	
PC.NR.1.3 Explain the role of the	The determinant must not be zero.
determinant in determining if a square matrix	
has a multiplicative inverse.	
PC.NR.1.4 Find the determinant of a square	Use technology as appropriate.
matrix if and only if the matrix has a	
multiplicative inverse.	

PC.NR.1. Represent and manipulate data using matrices.

PC.NR.2. Represent and model with vector quantities.

Indicator	Indicator Insight
PC.NR.2.1 Represent vector quantities as	Represent vectors and their magnitudes with
directed line segments and represent	varied and appropriate symbols.
magnitude and direction of vectors in	
component form.	
PC.NR.2.2 Find the components of a vector	Explore, recognize, and explain tail-to-head,
by adding and subtracting vectors on a	component-wise, and the parallelogram law
coordinate plane using a variety of methods.	of vector addition.
PC.NR.2.3 Solve problems, including real-	Use terms, including but not limited to
world situations, which can be represented by	<i>velocity, force</i> , etc.
vectors.	
PC.NR.2.4 Add and subtract vectors and	Solve problems both algebraically and
multiply vectors by a scalar to find the	graphically.
resultant vector.	

Indicator	Indicator Insight
PC.NR.3.1 Represent complex numbers on	Use formulas to multiply and divide complex
the complex plane in rectangular and polar	numbers in polar form.
form, including real and imaginary numbers,	
and explain why the rectangular and polar	
forms of a given complex number represent	
the same number.	

Indicator	Indicator Insight
PC.NR.3.2 Represent addition, subtraction,	Use properties of this type of representation
multiplication, and conjugation of complex	for computation and show how the functions
numbers geometrically on the complex plane;	can be interpreted geometrically on the
use properties of this representation for	complex plane.
computation.	

Patterns, Algebra, and Functional Reasoning

PC.PAFR.1. Build new functions from existing functions to solve mathematical and realworld situations.

Indicator	Indicator Insight
PC.PAFR.1.1 Combine and compose	Use the operations of addition, subtraction,
functions algebraically, tabularly, and	multiplication, and division.
graphically.	Evaluate the composition of functions at a
	given element of the domain given symbolic,
	tabular, and graphical representations.
PC.PAFR.1.2 Find the inverse of functions	Given that a function has an inverse, write an
and verify algebraically, numerically, and	expression for its inverse.
graphically.	Verify by composition that two functions are
	inverses of each other: $f(g(x)) = g(f(x)) = x$.
	Verify graphically that functions are inverses
	of each other.
	Verify numerically that functions are inverses
	of each other.
PC.PAFR.1.3 Compare the key features of a	For real-world application, consider using
function and its inverse function and use the	spreadsheet and computer algebra system
relationship to model real-world situations	technology as appropriate.
and solve problems.	
PC.PAFR.1.4 Graph and describe the effect	Given the graph, identify possible values of k .
on the graph $f(x)$ of $f(x)+k$, $f(x+k)$, $k \cdot f(x)$,	Functions include trigonometric, rational, and
and $f(k \cdot x)$, for specific values of both	general piecewise-defined functions with and
negative and positive values of k.	without technology.

PC.PAFR.2. Explore and analyze the behaviors of rational and piecewise functions to model contextual mathematical problems.

Indicator	Indicator Insight
PC.PAFR.2.1 Graph rational functions and	Key features of rational functions include:
describe their key features.	intercepts, asymptotes, symmetries about
	vertical asymptotes and zeros, domain, range,
	y-intercepts, intervals of increase and
	decrease, relative extrema, removable points
	of discontinuities, and end behavior.
	Consider using technology.
	To state key intervals, use interval and set
	notation.

Indicator	Indicator Insight
PC.PAFR.2.2 Solve rational equations and	Investigate real-world problems such as
inequalities in one variable and explain when	uniform motion, work, mixtures, etc.
extraneous solutions may arise.	
PC.PAFR.2.3 Transform rational expressions	Use inspection, long division, or a computer
in different forms.	algebra system for more complicated
	examples.
PC.PAFR.2.4 Graph piecewise-defined	Key features of functions include: domain,
functions, to include step functions and	range, continuity, end behavior, intercepts,
absolute value functions, and describe their	and intervals of increase and decrease.
key features.	Model real-world problems with piecewise-
	defined functions that incorporate polynomial,
	logarithmic, exponential, and radical
	functions.

PC.PAFR.3. Explore and analyze structures and patterns for radical functions and use radical expressions, equations, and functions to model real-world phenomena.

Indicator	Indicator Insight
PC.PAFR.3.1 Transform radical expressions	Use the product rule, quotient rule, and power
as expressions with rational exponents and	rule to manipulate expressions with rational
extend the properties of integer exponents to	exponents.
rational exponents.	
PC.PAFR.3.2 Solve radical equations and	Include Heron's Formula as a potential
describe how extraneous solutions may arise.	method of solution.
PC.PAFR.3.3 Analyze and graph radical	Analyze both symbolic and graphical forms.
functions.	Key features of a radical function include:
	domain, range, intercepts, roots, zeros,
	solutions, intervals (increasing, decreasing,
	positive, and/or negative), maximum and
	minimum values (including endpoint
	extrema), non-symmetry, and end behavior.
	Use graphing technology to analyze functions
	as appropriate.

PC.PAFR.4. Explore and analyze structures and patterns for exponential and logarithmic functions and use exponential and logarithmic expressions, equations, and functions to model real-world phenomena.

Indicator	Indicator Insight
PC.PAFR.4.1 Graph logarithmic functions	Key features of logarithmic functions include:
and describe their key features.	domain, range, intercepts, asymptotes,
	intervals of positive and/or negative, intervals
	of increase and/or decrease, non-symmetry,
	and end behavior.
	To state key intervals, use interval and set
	notation.
	Determine the effects to the function or graph
	when key features are manipulated.
PC.PAFR.4.2 Use the definition of a	Must include common and natural logarithms.
logarithm, logarithmic properties, and the	Apply knowledge of inverse relationships.
inverse relationship between exponential and	
logarithmic functions to solve problems,	
including real-world context.	
PC.PAFR.4.3 Model real-world situations and	Investigate and solve problems such as:
solve problems involving exponential and	exponential growth, exponential decay, half-
logarithmic functions.	life, compound interest, Newton's Law of
	Cooling, and Richter Scale.

PC.PAFR.5. Explore and analyze structures and patterns of trigonometric functions and use trigonometric functions to model real-world phenomena.

Indicator	Indicator Insight
PC.PAFR.5.1 Graph trigonometric functions	Key features of trigonometric functions
and their inverses and describe their key	include: period, midline,
features.	amplitude, phase shift, intercepts, asymptotes,
	symmetries, domain, range, relative extrema,
	intervals of increasing, decreasing, positive,
	or negative.
	To state key intervals, use interval and set
	notation.
PC.PAFR.5.2 Restrict the domain of a	Relate the characteristics of inverse
trigonometric function to define the six	trigonometric functions to the given output
inverse trigonometric functions, graph the	values with and without the use of
inverse function, and evaluate inverse	technology.
trigonometric expressions.	
PC.PAFR.5.3 Use inverse functions to solve	Pay attention to the given interval and domain
trigonometric equations that arise in modeling	restrictions on the function.
contexts; evaluate the solutions and interpret	
them in terms of the context.	

PC.PAFR.6. Manipulate, prove, and apply trigonometric identities and equations to solve contextual mathematical problems.

Indicator	Indicator Insight
PC.PAFR.6.1 Apply the fundamental	Include quotient, reciprocal, Pythagorean
trigonometric identities to simplify	identities, even/odd, and cofunction identities.
expressions and verify other identities.	
PC.PAFR.6.2 Apply the sum, difference,	Consider investigating the connection
double-angle, and half-angle formulas for	between the identities as they are derived.
sine, cosine, and tangent and use them to	
solve problems.	
PC.PAFR.6.3 Model real-world situations and	Real-world situations to investigate include
solve problems involving trigonometric	but are not limited to a Ferris Wheel, tidal
equations.	wave, swinging pendulum, etc.

PC.PAFR.7. Represent data with matrices, perform mathematical operations, and solve systems of linear equations for mathematical problems.

Indicator	Indicator Insight
PC.PAFR.7.1 Solve a simple system	Graphically identify the point or points of
consisting of a linear equation and a quadratic	intersection.
equation in two variables algebraically and	
graphically. Understand that such systems	
may have zero, one, or two solutions.	
PC.PAFR.7.2 Solve an equation of the form	Extend to include transformed parent
f(x) = g(x) graphically by identifying the <i>x</i> -	functions introduced in Pre-calculus.
coordinate(s) of the point(s) of intersection of	
the graphs of $y = f(x)$ and $y = g(x)$.	
PC.PAFR.7.3 Represent a system of linear	Discuss that a matrix can take the form $AX =$
equations as a single matrix equation in a	<i>B</i> , where <i>A</i> represents the coefficient of
vector variable.	variables, X represents variables, and B
	represents the output to the equations.

Calculus Standards

In South Carolina College- and Career-Ready (SC CCR) Calculus, students build on the conceptual knowledge and the problem-solving skills they learned in previous mathematics courses. This course prepares students for postsecondary mathematical study but is not designed to prepare students for an Advanced Placement exam. SC CCR Calculus focuses on a conceptual understanding of calculus as well as computational competency. The standards promote a multi-representational approach to calculus with concepts, results, and problems being expressed graphically, numerically, analytically, and verbally. These representations facilitate an understanding of the connections among limits, derivatives, and integrals.

In this course, students are expected to apply mathematics in meaningful ways to solve problems that arise in the workplace, society, and real-world situations through the process of modeling. Modeling involves choosing or creating appropriate equations, graphs, functions, or other mathematical representations to analyze real-world situations and answer questions. The use of technological tools, such as handheld graphing calculators, is important in creating and analyzing mathematical representations used in the modeling process and should be used during instruction and assessment. However, technology should not be limited to handheld graphing calculators. Students should use a variety of technologies, such as graphing utilities, spreadsheets, and computer algebra systems, to solve problems and to master standards in all Strands of this course.

Prerequisite courses: Geometry > Algebra 1 > Algebra 2> Pre-Calculus

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why. Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
JUSTIFY	thinking skills to reason both abstractly and	application to relationships in mathematical and real-world
	5	
	quantitatively.	representations.
		Evaluate multiple sources of
		information from text, charts, tables,
		graphs, and other diverse media and formats.
		Students can write explanatory text that
		conveys their mathematical analyses and thinking.
		Apply concrete details, relevant facts,
		and coherent discussions of ideas to
		support thinking.
		Decontextualize by pulling information
		from a given situation, representing it
		symbolically, then manipulating the
		representing symbols as if they are their
		own entities, not necessarily relative to
		what the symbol stands for.
		Contextualize by pausing during the
		manipulation process to explore the
		meaning of symbols within the given
		situation.
STRUCTURE &	MPS.SP.1 Identify and	Examine, discern, and recognize
PATTERNS	apply regularity in	patterns or structures as complex
	repeated reasoning to	mathematical objects composed of
	make generalizations.	more than one simple object.
		Students can attend to detail and
		continually evaluate the reasonableness of their results.
		Students can transform more complex
		structures into something they know.
		Discern and recognize regularity in
		repeated reasoning.
		repeated reasoning.

Measurement, Geometry, and Spatial Reasoning

C.MGSR.1. Explain the concept of the integral of a function geometrically, numerically,
analytically, and contextually.

Indicator	Indicator Insight
C.MGSR.1.1 Explain how the definite	Use visual examples to introduce left, right,
integral is used to solve area problems.	and midpoint Riemann sums.

Indicator	Indicator Insight
C.MGSR.1.2 Approximate definite integrals	Calculate Riemann sums using left, right, and
by a finite sum.	midpoint evaluations, as well as trapezoidal
	sums.
C.MGSR.1.3 Interpret the definite integral as	Use visual examples to aid in the
a limit of Riemann sums.	interpretation.
C.MGSR.1.4 Explain the relationship	Consider looking at the statements of the
between the integral and derivative as	theorem.
expressed in both parts of the Fundamental	
Theorem of Calculus. Interpret the	
relationship in terms of rates of change.	

C.MGSR.2. Apply theorems and rules of integration to solve mathematical and real-world	
problems.	

Indicator Insight	
Determine which fundamental theorem is	
needed to solve mathematical and real-world	
problems based upon the context.	
Important properties of definite integrals are:	
Adding Function Property	
• Adding Intervals Property	
• Interval of Zero-length Property	
• <i>Reversing the Interval Property</i>	
• The Area Above – Area Below	
Property	
Include mathematical and real-world	
problems.	

Numerical Reasoning

C.NR.1. Apply the concepts of a limit graphically, numerically, analytically, and contextually.

Indicator	Indicator Insight
C.NR.1.1 Estimate and verify limits using	Include continuous functions and functions
tables, graphs of functions, and technology.	with removable, infinite, oscillating, and jump
	discontinuities.
C.NR.1.2 Calculate limits, including one-	Find limits such as:
sided limits, algebraically using direct	 limits by substitution;
substitution, simplification, rationalization,	• limits of sums, differences, products,
and the limit laws for constant multiples,	and quotients;
sums, differences, products, and quotients.	• limits of rational functions that are
	undefined at a point;
	 one-sided limits; and
	• special limits such as $\lim_{x \to 0} \frac{\sin x}{x}$.

Indicator	Indicator Insight
C.NR.1.3 Calculate infinite limits and limits	When finding asymptotes, include rational,
at infinity and use the limits to identify	exponential, and logarithmic functions.
asymptotes.	Decide when a limit is infinite and use limits
	involving infinity to describe asymptotic
	behavior.

Patterns, Algebra, and Functional Reasoning

C.PAFR.1. Apply the definition and graphical interpretation of continuity of a function.

Indicator	Indicator Insight
C.PAFR.1.1 Apply the definition of	Decide if a function is continuous at a point.
continuity of a function at a point to solve	
problems.	
C.PAFR.1.2 Classify discontinuities as	Find the types of discontinuities of a function.
removable, jump, or infinite. Justify that	
classification using the definition of	
continuity.	
C.PAFR.1.3 Understand the Intermediate	Use the Intermediate Value Theorem on a
Value Theorem and apply the theorem to	function over a closed interval.
prove the existence of solutions of equations	Apply the <i>Extreme Value Theorem</i> .
arising in mathematical and real-world	Understand continuity in terms of limits.
problems.	

C.PAFR.2. Understand the concept of the derivative of a function geometrically, numerically, analytically, and verbally.

Indicator	Indicator Insight
	0
C.PAFR.2.1 Interpret the value of the	Interpret using real-world and mathematical
derivative of a function as the slope of the	situations in context.
corresponding tangent line.	
C.PAFR.2.2 Interpret the value of the	Include examples such as velocity and
derivative as an instantaneous rate of change	population growth and compare to average
in a variety of real-world contexts such as	rate of change around the same point.
velocity and population growth.	
C.PAFR.2.3 Approximate the derivative	Find equations for the tangent line and the
graphically by finding the slope of the tangent	normal line to the graph of a function.
line drawn to a curve at a given point and	
numerically by using the difference quotient.	
C.PAFR.2.4 Explain graphically and	The graph of a differentiable function has a
analytically the relationship between	non-vertical tangent line at each interior point
differentiability and continuity.	in its domain.
C.PAFR.2.5 Explain graphically and	Find the average rate of change and the
analytically the relationship between the	instantaneous rate of change in the context of
average rate of change and the instantaneous	a real-world system.
rate of change.	

Indicator	Indicator Insight
C.PAFR.2.6 Use the definition of the	Consider using algebraic, exponential and
derivative to determine the derivatives of	trigonometric functions.
various functions.	

C.PAFR.3. Apply the rules of differentiation to functions.

Indicator	Indicator Insight
C.PAFR.3.1 Identify and apply the	Connect these derivatives back to the limit
derivatives of constant, power, trigonometric,	definition of the derivative.
inverse trigonometric, exponential, and	
logarithmic functions.	
C.PAFR.3.2 Use the constant multiple, sum,	Blend chain rule with prior rules.
difference, product, quotient, and chain rules	
to find the derivatives of functions.	
C.PAFR.3.3 Apply the methods of implicit	In implicit differentiation, differentiate each
and logarithmic differentiation.	side of an equation with two variables
	(usually x and y) by treating one of the
	variables as a function of the other.

C.PAFR.4. Apply theorems and rules of differentiation to solve mathematical and realworld problems.

Indicator	Indicator Insight
C.PAFR.4.1 Explain the mathematical and	Include geometric, symbolic, and verbal
real-world meanings of the Extreme Value	explanations.
Theorem and the Mean Value Theorem.	1
C.PAFR.4.2 Write an equation of a line	Include both mathematical and real-world
tangent to the graph of a function at a point.	examples.
C.PAFR.4.3 Explain the relationship between	Explain how the sign of the first derivative
the increasing/decreasing behavior of f and	describes the shape of a function's graph.
the signs of f' . Use the relationship to	State the first derivative test for critical
generate a graph of f given the graph of f' ,	points.
and vice versa, and to identify relative and	
absolute extrema of <i>f</i> .	
C.PAFR.4.4 Explain the relationships among	Use concavity and inflection points to
the concavity of the graph of f , the	explain how the sign of the second derivative
increasing/decreasing behavior of f' and the	describes the shape of a function's graph.
signs of f'' . Use those relationships to	State the second derivative test for local
generate graphs of f , f' , and f'' given any one	extrema.
of them and identify the points of inflection of	
<i>f</i> .	
C.PAFR.4.5 Solve a variety of real-world	In real-world situations, the derivative can tell
problems involving related rates,	you at which speed you are driving, or help
optimization, linear approximation, and rates	you predict fluctuations on the stock market;
of change.	in machine learning, derivatives are important
	for function optimization.

Reasoning in Mathematics Standards

T Reasoning in Mathematics engages students in relevant problems that focus on how mathematics and statistics inform decision-making. It prepares students for postsecondary options with instruction that focuses on modeling real-world problems.

This course emphasizes statistics, quantitative reasoning, modeling, and financial applications and features a variety of mathematical and statistical tools useful for decision-making. Students will make sense of authentic problems and persevere in solving them. They will reason abstractly and quantitatively while communicating mathematics to others. Students will use appropriate tools, including technology, to model mathematics. Students will use structure and regularity of reasoning to describe mathematical situations and solve problems.

Prerequisite courses: Geometry > Algebra 1

Mainemailcai Process Si		
STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why. Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
JUSTIFY	thinking skills to reason both abstractly and	application to relationships in mathematical and real-world
	5	
	quantitatively.	representations.
		Evaluate multiple sources of
		information from text, charts, tables,
		graphs, and other diverse media and formats.
		Students can write explanatory text that
		conveys their mathematical analyses and thinking.
		Apply concrete details, relevant facts,
		and coherent discussions of ideas to
		support thinking.
		Decontextualize by pulling information
		from a given situation, representing it
		symbolically, then manipulating the
		representing symbols as if they are their
		own entities, not necessarily relative to
		what the symbol stands for.
		Contextualize by pausing during the
		manipulation process to explore the
		meaning of symbols within the given
		situation.
STRUCTURE &	MPS.SP.1 Identify and	Examine, discern, and recognize
PATTERNS	apply regularity in	patterns or structures as complex
	repeated reasoning to	mathematical objects composed of
	make generalizations.	more than one simple object.
		Students can attend to detail and
		continually evaluate the reasonableness of their results.
		Students can transform more complex
		structures into something they know.
		Discern and recognize regularity in
		repeated reasoning.
		repeated reasoning.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
RM.DPSR.1.1 Formulate a statistical question	Discuss data sources (including what
and develop a statistical method to address	constitutes primary data and secondary data)
questions/studies through exploration of the	and the ethics of data collection, particularly
research cycle.	with human subjects.

Indicator	Indicator Insight
RM.DPSR.1.2 Write and identify a null	Introduce case studies, and then determine
hypothesis and an alternative hypothesis, as	whether given studies are observational or
well as what makes up an experimental study.	experimental and learn about identification of
	participants, assignment of treatments, and the
	placebo effect.
RM.DPSR.1.3 Identify the population of	Identify various sampling techniques used.
interest and the variables to be used in each	
study. Students then determine the	
appropriate sampling design, sampling	
technique, and statistical analysis for each	
research question.	

RM.DPSR.2. Analyze data of a statistical experiment.

Indicator	
	Indicator Insight
RM.DPSR.2.1 Compare and contrast	The focus is narrowed to quantitative data and
categorical and quantitative data.	then to univariate data.
RM.DPSR.2.2 Identify the variable of	Compare and contrast multiple data sets.
interest, interpret a variety of graphical	Throughout this section, students
displays (particularly histograms and box	communicate their analyses orally and/or in
plots), and estimate center, spread, shape,	writing, using appropriate statistical language
outliers, and unusual features.	as well as nontechnical language.
RM.DPSR.2.3 Analyze histograms in depth,	Consider having students explore these
analyzing the effect of changing the bin size	concepts in a research project.
(also known as interval width).	Use technology to construct graphical
	representations.
RM.DPSR.2.4 Analyze the appropriateness	Consider having students explore these
and usefulness of the chosen measure of	concepts in a research project.
center and of the graphical display.	
RM.DPSR.2.5 Analyze the shape, spread and	Consider having students explore these
unusual features of data sets and identify	concepts in a research project.
limitations based on data collection.	

RM.DPSR.3. Explore the sources of variability in sampling methods.

Indicator	Indicator Insight
RM.DPSR.3.1 Analyze possible sources of	Explore the importance of designing surveys
variability in the data, including biased	and/or observation instruments as they
sampling methods (such as non-representative	finalize their own study and presentation of
sampling and under coverage) and biased	their results.
statistics, as well as natural and induced	
variability.	
RM.DPSR.3.2 Identify and explore various	Investigate and explore bias such as response
possible sources of statistical bias (such as	bias, nonresponse bias, and observer effect
response bias, nonresponse bias, and observer	bias.
effect) and examine the effects of statistical	
bias on the generalizability of results.	

Measurement, Geometry, and Spatial Reasoning

Indicator	Indicator Insight
RM.MGSR.1.1 Use matrices to organize information and identify matrices that can be used to describe geometric transformations.	Represent figures using matrices and then look at ways of determining different matrices that answer questions arising from different situations. Students will create and "move" their own figures using matrices, as seen in animation.
RM.MGSR.1.2 Represent figures using matrices and explore ways of determining different transformations, including <i>translations, reflection, rotations, dilations,</i> <i>or combinations.</i>	Dynamic geometry software can be used by students to apply in real-world situations.

RM.MGSR.1. Identify transformations using matrices.

RM.MGSR.2. Analyze truth tables to validate real-world situations.

Indicator	Indicator Insight
RM.MGSR.2.1 Analyze truth tables to	Work with a variety of statements and
determine and verify the validity of	arguments, which quickly become more
arguments.	complicated and generally more applicable.
RM.MGSR.2.2 Create arguments and	Work with a variety of statements and
statements to validate their own and peers'	arguments, which quickly become more
arguments.	complicated and generally more applicable.

Numerical Reasoning

RM.NR.1. Analyze numerical data through estimation and approximation in real-world situations.

Indicator	Indicator Insight
RM.NR.1.1 Use various numerical techniques	Real-world situations may include assessing
when estimating and calculating very large	the size of the crowd and calculating the
and small values.	number of possible telephone numbers in the
	US.
RM.NR.1.2 Apply proportional reasoning	Include aspect ratios in photography, in
with aspect ratios.	movies, in theaters, and on TV.
RM.NR.1.3 Use weighted averages and sums.	Decision-making may include: the best
	grading system, averages in sport ratings, cost
	indices for attending an event, and the
	Gunning Fog Index for measuring the
	readability of a piece of writing.

Indicator	Indicator Insight
RM.NR.1.4 Investigate and validate	Investigate real-world situations of
identification numbers.	identification numbers, including but not
	limited to check digits to prevent fraud,
	creation of Universal Product Codes (UPCs).
	Decision-making may include choosing the
	appropriate number of digits necessary to
	create unique ID numbers.

RM.NR.2. Analyze present and future value of investments involving interest.

Indicator	Indicator Insight
RM.NR.2.1 Compare and contrast the	Use exponential functions representing the
nominal interest rate with the annual	future value of an investment compounded
percentage rate (APR).	annually and monthly.
RM.NR.2.2 Determine the future value of an	Investigate the future and present value of an
investment given the present value.	annuity.

RM.NR.3. Analyze real-world scenarios involving credit card debt and loans.

Indicator	Indicator Insight
RM.NR.3.1 Determine the monthly payment to retire a debt at a fixed rate.	Use credit card statements to understand the concept of minimum payment, length of time to pay off debt using minimum payments, and the APR of minimum payments.
RM.NR.3.2 Compare and contrast different credit card offers using minimum payments.	Compare bank or credit union car loans, automobile dealer car loans, and cash-back features.

Patterns, Algebra, and Functional Reasoning

RM.PAFR.1. Analyze regression of linear functions.

Indicator	Indicator Insight
RM.PAFR.1.1 Compute and analyze the	Explore data that follow an exponential
correlation coefficient of the data to	pattern using the idea of a common ratio
determine the strength of the linear model.	between consecutive values.
	Decision-making may include determining an
	appropriate model and how far one could
	safely extrapolate.
RM.PAFR.1.2 Analyze data that follow a	Students should be familiar with finding
linear pattern using recursively defined rules	recursive and explicit formulas of arithmetic
and compare those rules to explicit function	sequences.
rules.	

Indicator	Indicator Insight
RM.PAFR.2.1 Explore step and piecewise	Consider the use of scatter plots to assess the
functions to make predictions and decisions	validity of a model and the function rule to
about a variety of mathematical and real-	determine values of the function at specific
world situations.	points in time.
	Students use these values to make predictions
	and decisions about a variety of problem
	situations.

RM.PAFR.2. Analyze step and piecewise function in real-world situations.

RM.PAFR.3. Analyze data that follow an exponential pattern using the idea of a common ratio between consecutive values.

Indicator	Indicator Insight
RM.PAFR.3.1 Find recursive rules to model	Consider including the following to help
the data and make connections between the	develop students' understanding:
recursive rule and the explicit function rule of	 Recursion in Exponential
the exponential relationship.	• Growth and Decay (For example:
	Recursion and Exponential Functions and comparing models)
	 Recursion Using Rate of Change (For example: Newton's Law of Coding;
	Rates of Change in Exponential
	Models)
	• Recursion in Cyclical Models (For
	example: Modeling the Singapore
	Flyer)

Applications and Modeling Standards

Mathematical Modeling is a newly-designed, specialized mathematics course developed to expand on and reinforce the concepts introduced in Algebra 1 and Geometry by using those concepts to represent and analyze data and make predictions and inform judgments about real-world phenomena.

Mathematical Modeling is designed to engage students in doing, thinking about, and discussing mathematics, statistics, and modeling in real-world situations. It allows students to experience mathematics and its applications in a variety of ways that promote financial literacy and career-based decision-making.

In this course, students explore decision-making for financial planning and management, design in three dimensions, interpret statistical studies, and create functions that model problems faced by society. Measurements are taken from the real-world, and technology is used extensively for computation, with an emphasis on students' interpretation and explanation of results in context.

Prerequisite courses: Geometry > Algebra 1

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why. Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Make sense of quantities and their application to relationships in mathematical and real-world representations. Evaluate multiple sources of information from text, charts, tables, graphs, and other diverse media and formats. Students can write explanatory text that conveys their mathematical analyses and thinking. Apply concrete details, relevant facts, and coherent discussions of ideas to support thinking. Decontextualize by pulling information from a given situation, representing it symbolically, then manipulating the representing symbols as if they are their own entities, not necessarily relative to what the symbol stands for. Contextualize by pausing during the manipulation process to explore the
		meaning of symbols within the given situation.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Examine, discern, and recognize patterns or structures as complex mathematical objects composed of more than one simple object. Students can attend to detail and continually evaluate the reasonableness of their results. Students can transform more complex structures into something they know. Discern and recognize regularity in repeated reasoning.

Data, Probability, and Statistical Reasoning

predictions.	
Indicator	Indicator Insight
AM.DPSR.1.1 Summarize and interpret	Applications could include forecasting growth
trends to make predictions in real-world	and decline of various career fields by
situations.	interpreting data from charts and graphs, or
	predicting trends about population change that
	will affect employment rate.
AM.DPSR.1.2 Calculate and explain pay	Use student career path predictions to develop
scale based on occupational outlook	spreadsheets of occupational projections.
projections.	
AM.DPSR.1.3 Calculate and explain	Community members and educational
operating costs, including cost of materials,	business partners could provide estimated
supplies, equipment, license fees, and	operational cost.
insurance fees.	
AM.DPSR.1.4 Construct and analyze charts	Use community information to determine
that reflect current demographics in various	industry needs in the area.
industries.	

AM.DPSR.1. Summarize and interpret data represented in tables or graphs to make predictions.

AM.DPSR.2. Solve problems involving probability and probability models, and use expected value to make informed decisions in real-world situations.

Indicator	Indicator Insight
AM.DPSR.2.1 Determine the probability of	Probability Rules: general addition rule,
simple and compound events in real-world	general multiplication rule.
situations.	
AM.DPSR.2.2 Use probabilities to make and	Real-world applications could include
justify decisions about risks in real-world	analyzing insurance rates and utilizing risk
situations.	analysis to develop a job safety analysis plan.
AM.DPSR.2.3 Calculate and analyze the	Consider using technology for creating
expected value of a probability model,	probability models.
including binominal, normal, and Poisson	
distributions, for a real-world situation to	
make decisions about fairness, payoff, and	
risk.	

Measurement, Geometry, and Spatial Reasoning

involving inaccessible distances.		
Indicator	Indicator Insight	
AM.MGSR.1.1 Apply sine, cosine, and	Suggested activities could include:	
tangent ratios and the Laws of Sines and the	Clinometer activity (indirect	
Law of Cosines to discover distances.	measurement)	
	Wheelchair Access	
	Landscaping	

AM.MGSR.1. Apply trigonometric principles to solve real-world geometric situations involving inaccessible distances.

AM.MGSR.2. Critique the appropriateness of measurements in terms of precision, accuracy, and approximate error.

Indicator	Indicator Insight
AM.MGSR.2.1 Determine dimensions by	Demonstrate an understanding of blueprints
scaling plans or blueprints.	and drawings.
AM.MGSR.2.2 Apply knowledge of fractions	Identify various measuring tools and
for reading a ruler to 1/16 inch to interpreting	demonstrate their use to verify precision,
blueprints and measuring materials.	accuracy, and approximate error.
AM.MGSR.2.3 Compare metric and imperial	Identify countries in the world that use the
systems of measurements used in industry.	imperial system and metric system and
	connect it to industry connections. Convert
	between English and metric measurement
	systems.

AM.MGSR.3. Apply two- and three-dimensional representations, geometric transformations, and scale models in planning, designing, and constructing solutions to real-world situations.

	T 1 · · T · 1 ·
Indicator	Indicator Insight
AM.MGSR.3.1 Calculate lengths utilizing the	Use a blueprint or scale drawing of a house to
Pythagorean Theorem.	determine the amount of materials to be
	purchased. Identify functions of various
	plumbing components.
AM.MGSR.3.2 Apply the concepts of area,	Calculate estimates for construction, house
volume, scale factors, and scale drawings to	planning or repair projects.
applied problems for a specific project.	
AM.MGSR.3.3 Determine the level of	Create drawings to represent a given solid
precision and the appropriate tools for taking	structure, using technology where appropriate
the measurements in constructing a two-	and determine which measurements cannot be
dimensional visual representation of a three-	taken directly and must be calculated based
dimensional object or structure.	on other measurements when constructing
	two-dimensional and three-dimensional
	figures.
AM.MGSR.3.4 Apply Heron's Formula for	Use Heron's Formula to find the area of
finding the area of a triangular region.	different types of triangles: scalene, isosceles,
	and equilateral.

AM.MGSR.4. Apply two- and three-dimensional representations in coordinate systems to find solutions in real-world situations.

Indicator	Indicator Insight
AM.MGSR.4.1 Plot coordinates on a three-	Consider using dynamic geometric software
dimensional Cartesian coordinate system and	to model real-world situations to design
use relationships between coordinates to solve	solutions to real-world problems.
design problems.	
AM.MGSR.4.2 Use technology and other	Three-dimensional design and video game
tools to explore the results of simple	designs are examples of ways to bring
transformations using three-dimensional	relevance to the coordinate system.
coordinates, including translations in the <i>x</i> , <i>y</i> ,	
and/or z directions; rotations of 90°, 180°, or	
270° about the <i>x</i> , <i>y</i> , and <i>z</i> axes; reflections	
over the <i>xy</i> , <i>yz</i> , and <i>xy</i> planes; and dilations	
from the origin.	

AM.MGSR.5. Use vectors and matrices to represent, organize, and describe data to solve problems in mathematical and real-world situations.

Indicator	Indicator Insight
AM.MGSR.5.1 Apply vectors to	Solve problems using vectors in areas such as
mathematical and real-world situations by	transportation, computer graphics, and the
recognizing vectors as mathematical objects	physics of force and motion.
having both magnitude and direction.	
AM.MGSR.5.2 Use and apply matrices to	Solve problems using matrices in fields such
represent geometric transformations in real-	as computer animations and banking.
world situations.	

Numerical Reasoning

AM.NR.1. Solve problems using fractions, percents, and ratios for real-world situations involving linear, quadratic, exponential and absolute functions.

Indicator	Indicator Insight
AM.NR.1.1 Apply numerical reasoning to	Apply percent increase and decrease.
real-world situations involving percent	Applications are related to tolerance, stock
increase and decrease.	transactions, credit cards, taxes, budgets,
	automobile purchases, fuel economy, Social
	Security, Medicare, retirement planning,
	checking and saving accounts, and other
	related finance applications.

Patterns, Algebra, and Functional Reasoning

AM.PAFR.1. Create and analyze mathematical models to make decisions on real-world situations.

Indicator	Indicator Insight
AM.PAFR.1.1 Use exponential functions to	Use exponential models related to earning,
model change in a variety of financial	investing, spending, and borrowing money.
situations.	
AM.PAFR.1.2 Compare the various means of	Investigate financing options for leasing and
paying for an automobile including leasing,	purchasing and the difference between
purchasing by cash, and purchasing by loan.	finance companies and banks.
AM.PAFR.1.3 Use sequences to represent	Investigate growth and reduction of credit
simple and compound interest and	card debt using spreadsheets.
depreciation.	

AM.PAFR.2. Analyze and solve application-based problems relating to direct, inverse, and joint variation.

Indicator	Indicator Insight
AM.PAFR.2.1 Apply variations to	Applications could include calculating the
mathematical and real-world situations to	proper size of a water service line and
describe troubleshooting in business and	drainage fixture units for a given pipe size.
industrial applications.	
AM.PAFR.2.2 Utilize mathematical skills for	Applications could include:
troubleshooting in business and industrial	• calculating wattage consumed by
applications.	energized units, solving problems in
	electrical circuits using Ohm's law,
	and determining voltage/amperage for
	various welding applications; and
	• calculating the proper size of a water
	service line and drainage fixture units
	for a given pipe size.

AM.PAFR.3. Analyze and apply linear programming to mathematical and real-world	
situations.	

Indicator	Indicator Insight
AM.PAFR.3.1 Calculate the values of the	Applications could include:
variables that maximize or minimize the	• calculating the optimal material
objective function given four or more	thickness for various projects;
constraints.	• calculating the load capacity in
	various applications;
	• calculating the fitting allowances and
	thread makeup using dimension
	tables;
	• calculating the grade and elevation of
	a trench for a sewer line; and
	• demonstrating and contrasting the
	variables for heat input and welding
	effects.

Statistical Modeling Standards

Statistical modeling is a newly-designed course that extends students' understanding of statistics. The Statistical Modeling course offers students opportunities to strengthen their understanding of the statistical method of inquiry and statistical simulations. Students will formulate statistical investigative questions to be answered using data, design and implement a plan to collect the appropriate data, select appropriate graphical and numerical methods for data analysis, and interpret their results to make connections with the initial question. The process standards, through a statistical lens, will provide the foundation for instruction and assessment. Topics should be introduced and assessed using simulations and appropriate supporting technology.

Statistical Inquiry Process: Developing Statistical Questions, Collecting Data, Analyzing Data, Interpreting Results

Prerequisite courses: Geometry > Algebra 1 > Algebra 2

Mathematical Process 5		1
STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why. Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
ANALYZE & JUSTIFY	MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Make sense of quantities and their application to relationships in mathematical and real-world representations. Evaluate multiple sources of information from text, charts, tables, graphs, and other diverse media and formats. Students can write explanatory text that conveys their mathematical analyses and thinking. Apply concrete details, relevant facts, and coherent discussions of ideas to support thinking. Decontextualize by pulling information from a given situation, representing it symbolically, then manipulating the representing symbols as if they are their own entities, not necessarily relative to what the symbol stands for. Contextualize by pausing during the manipulation process to explore the
		meaning of symbols within the given situation.
STRUCTURE & PATTERNS	MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	Examine, discern, and recognize patterns or structures as complex mathematical objects composed of more than one simple object. Students can attend to detail and continually evaluate the reasonableness of their results. Students can transform more complex structures into something they know. Discern and recognize regularity in repeated reasoning.

Data, Probability, and Statistical Reasoning

Indicator	Indicator Insight
SM.DPSR.1.1 Calculate and interpret z- scores as a measure of relative standing to standardize units.	Use z-scores as statistical tools that enable comparison of samples with different units and that can be used with any distribution regardless of shape. Use z-scores to make decisions when analyzing real-world data. Use technology to calculate the standard deviation to determine z-scores, where necessary.
SM.DPSR.1.2 Approximate percentages using the <i>Empirical Rule</i> and z-scores for normally distributed data.	Use technology such as calculators, spreadsheets, or tables to estimate areas under a normal curve. Understand that the rule is not appropriate for data sets that are not normally distributed.
SM.DPSR.1.3 Using simulations taken from a given population, model sample-to-sample variability in sampling distributions of a statistic.	Use simulations to determine if a given model accurately reflects real outcomes. Use statistics from repeated samples of the same size to explore sample-to-sample variability.
SM.DPSR.1.4 Construct and compare confidence intervals of different models to make conclusions about reliability given a margin of error.	Develop confidence intervals using simulations and technology, including statistical applets. Apply the concept of margin of error to make conclusions about the reliability of statistical results. Students should not be required to calculate margin of error.
SM.DPSR.1.5 Summarize and evaluate reports based on data for appropriateness of study design, analysis methods, and statistical measures used.	Students should communicate statistical information, verbally, and in writing.

SM.DPSR.1. Communicate using descriptive and inferential statistics by collecting, critiquing, analyzing, and interpreting real-world data.

SM.DPSR.2. Formulate investigative statistical questions that can be answered using data.

Indicator	Indicator Insight
SM.DPSR.2.1 Formulate investigative	Distinguish statistical questions from other
statistical questions about a population using	types of questions.
samples taken from the population.	Identify when situations use an entire
	population (census) and a part of the
	population (sample).

Indicator	Indicator Insight
SM.DPSR.2.2 Formulate comparative and	Compose statistical questions to collect and
associative investigative statistical questions	analyze appropriate data to answer the
for surveys and observational studies to	statistical investigative question.
compare two or more groups or to investigate	
the association of two or more variables.	
SM.DPSR.2.3 Formulate comparative and	Compose statistical questions to collect and
associative investigative statistical questions	analyze appropriate data to answer the
for experiments to compare two or more	statistical investigative question.
groups or to investigate the association of two	
or more variables.	
SM.DPSR.2.4 Formulate inferential	Pose statistical investigative questions for a
investigative statistical questions regarding	particular sample to determine any association
association and prediction.	of the variables of interest for that sample.
SM.DPSR.2.5 Formulate investigative	Expand the types of statistical investigation
statistical questions for two variables.	questions to include questions concerning
	association and prediction.

SM.DPSR.3. Design and implement a plan to collect data to address the investigative statistical question.

Indicator	Indicator Insight
SM.DPSR.3.1 Apply an appropriate data-	Use appropriate sampling techniques, such as
collection plan when collecting data for the	random, simple random, stratified, cluster, or
investigative statistical question of interest.	systematic.
	Critique poorly-constructed surveys and
	suggest good questions.
	Consider whether the population is well-
	defined, the sampling procedure is random or
	non-random, and whether the objectivity or
	bias of questions will result in valid/invalid
	answers.
SM.DPSR.3.2 Distinguish between sample	Understand there are advantages and
surveys, observational studies, and	disadvantages of each data collection method
experiments.	for specific statistical questions.
SM.DPSR.3.3 Design sample surveys,	Identify, discuss, and explain the aspects of
experiments, and observational studies using	best statistical practice for designing an
statistical methods.	experimental study including clearly
	identifying:
	 the statistical question being investigated;
	 the variables being investigated;
	and
	 random selection of experimental
	units and/or the random
	assignment of treatments to the
	experimental units.

Indicator	Indicator Insight
SM.DPSR.3.4 Differentiate between random selection and random assignment and identify their impact on generalizing.	Design and conduct comparative experiments using random assignment and demonstrate correct methods for planning data collection for comparison of treatments. Randomly assign treatments to experimental units.
SM.DPSR.3.5 Examine potential sources and effects of bias and confounding variables.	Design and conduct surveys from both non- random and randomly selected participants. Students could explain why random samples can provide more unbiased information about a population than other types of samples, such as convenience samples or self-selected samples. Identify bias including response bias, under coverage, nonresponse bias, selection bias, and experimenter bias.
SM.DPSR.3.6 Describe and comply with the ethical use of data.	Practices for handling data that enhance reproducibility and ensure ethical use include providing descriptions of alterations to collected data, proper treatment of sensitive information, maintaining the confidentiality of data and experimental units, and using Institutional Review Boards to review study designs. Describe the ethical consequences of their experiments and analyses.
SM.DPSR.3.7 Identify when data can be generalized to a target population.	Make generalizations to an implied population that extend beyond the collected sample data, samples must be randomly selected from the implied population. Sampling procedures that are not random may be biased; therefore, these samples cannot be used to make generalizations to the sampled population.

Indicator	Indicator Insight
SM.DPSR.4.1 Describe quantitative and	Identify types of displays that are appropriate
categorical data.	for categorical data, such as pie charts, bar
	charts, pareto charts, versus quantitative data,
	such as histograms, stem plots, box plots, dot
	plots.
	Use tables, including relative frequency
	tables, graphical displays, including
	histograms and modified box plots, and
	numerical summary statistics.
SM.DPSR.4.2 Summarize and describe	Use tables, including two-way tables,
relationships between two variables.	graphical displays, including scatter plots, and
	numerical summary statistics.
	Identify situations where change in one
	attribute may be related to change in another attribute.
	When describing quantitative relationships
	include direction, form, strength, and unusual
	features such as outliers, gaps, clusters, etc.
	Strength of association is demonstrated by
	degree of spread about the line of best fit in a
	scatter plot.
SM.DPSR.4.3 Describe the relationship	Provide a reasonable estimate of the
between two quantitative variables by	Pearson's correlation coefficient (r) for a
interpreting correlation (r) and a least-square	scatter plot ($r = -0.82$ and $r = 0.82$ indicate the
regression line (using technology).	same strength with opposite direction).
	Interpret the strength of a linear relationship
	based on r.
	Understand that the magnitude of the
	correlation coefficient, r, represents the
	strength of linear association only.
SM.DPSR.4.4 Assess the fit of a linear model	Calculate and understand a residual as the
by plotting and analyzing residuals, including	difference between what is observed and what
the squares of the residuals, to improve its fit.	is predicted.
SM.DPSR.4.5 Calculate and interpret the p-	Approximate p-values using simulation or
value for a population proportion and/or	simulation results, especially for the
population mean.	difference in two means or two proportions.
	Convert a p-value into a statement about their
	confidence that the observed data was
	produced by the treatment rather than by
	random chance.

SM.DPSR.4. Use appropriate graphical and numerical methods to analyze data.

Indicator	Indicator Insight
SM.DPSR.4.6 Use simulated sampling	Understand that repeated samples reveal
distributions to describe the sample-to-sample	variability, and sampling variability is
variability of sample statistics.	influenced by sample size.
	Interpret the sampling variability in a
	summary statistic: sample mean, sample
	proportion, median, IQR, and standard
	deviation.
	Interpret the sampling variability from
	simulation studies of statistics.
SM.DPSR.4.7 Use simulations to investigate	Interpret measures of association to determine
associations between two categorical	if there is a relationship between variables.
variables and to compare groups.	Understand that association does not imply
	cause-and-effect.

SM.DPSR.5. Interpret the results of the analysis by making connections to the investigative	÷
statistical question.	

Indicator	Indicator Insight
SM.DPSR.5.1 Use statistical evidence from	Decide whether an observed difference is
analyses to answer investigative statistical	something that would be likely to be observed
questions.	by chance and whether this difference has any
	practical meaning.
	Recognize that significance is demonstrated
	by a result that is unlikely to occur by chance.
	Recognize that statistical, but not practical,
	significance is influenced by sample size.
SM.DPSR.5.2 Determine the possible impact	Describe how the presence of outliers
of extreme data points, missing values, or	contributes to overestimate or underestimate
incorrect values on the results.	population estimates.
	Describe how missing or imprecise values can
	lead to biased or inaccurate estimations.
SM.DPSR.5.3 Use and interpret the p-value	Interpret a p-value to make an inference in the
to determine whether the estimate for a	context of a study.
population parameter is reasonable.	Interpret the p-value as the probability of
	observing the statistic, given the population
	parameter is true.
SM.DPSR.5.4 Interpret a given margin of	Interpret the confidence interval(s) in relation
error corresponding to an estimate of a	to the situation being examined.
population parameter.	Understand that sampling variability is
	associated with summary statistics and uses
	the margin of error to form an interval
	(confidence interval) to estimate the
	characteristic.

Indicator	Indicator Insight
SM.DPSR.5.5 Explain the impact of multiple	Provide or select appropriate interpretations
variables on one another.	of graphical displays and numerical
	summaries when comparing two or more
	groups in the context of a study.

Discrete Mathematics Standards

Discrete Mathematics is a collection of methods for studying big data analytics. It includes the study of the principles of number theory; classification and comparison of objects; use of matrices to model and solve problems; use of recursion model; analysis of numbers with different bases; data probability and statistical reasoning in real-world situations; use of graph theory; and the principles of logic theory.

Discrete Mathematics stresses the connections between contemporary mathematics and their applications to our daily lives. It provides tools for understanding and using inference systems for drawing reasonable conclusions, algorithms for scaling computations, and managing large scale data. Topics addressed in this course are applicable to real-world career fields such as the field of computer science and situations which include management sciences, statistics, voting and social choice, fairness and game theory, size and growth, and money and resources. Environmental and economic decisions dominate modern life, and behind these decisions are fundamental principles of science, technology, and mathematics.

Prerequisite courses: Geometry > Algebra 1 > Algebra 2

Mathematical Process Standards

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
PROBLEM	MPS.PS.1 Make sense of	Experience problems that are
SOLVING	problems and persevere in	interesting and relevant to students'
	solving them strategically.	lives demonstrating the impact of
		mathematics.
		Identify the meaning of a problem,
		utilize appropriate tools, and clearly
		articulate the "what" of the question.
		Draw on prior knowledge, analyze
		given information including
		constraints, relationships, and goals to
		find entry points or pathways to a
		solution.
		Employ critical thinking skills to
		consider analogous problems, using
		special cases and simpler forms of the
		problem to gain additional insight into
		the solution.
		Explain similarities and differences
		between equations and expressions,
		including their graphical and tabular
		representations.
		Draw diagrams, graph data to clarify
		information, show relationships, and
		search for patterns and trends.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
REPRESENTATION	MPS.RC.1 Explain ideas	Engage in discourse to explain
&	using precise and	reasoning and select tools, both
COMMUNICATION	contextually appropriate	physical and electronic, that are helpful
	mathematical language, tools, and models.	to explore, model, and deepen students' understanding of mathematical concepts. Understand and use definitions, verbal,
		and written information to construct
		arguments and prove conjectures.
		Students can actively listen to the
		mathematical ideas of others while
		communicating their own, and they can
		solve problems collaboratively.
		Compare two arguments, distinguish
		and explain the difference between
		correct and flawed logic, and explain
		what is flawed or correct and why. Present conclusions and results using a
		variety of ways including, but not
		limited to, tables, graphs, formulas,
		diagrams, flowcharts, interactive
		models, and dynamic software.
		Collaborative work involves joint
		thinking among individuals as part of
		problem solving.
		Technology tools such as graphing
		utilities, dynamic geometry,
		spreadsheets, and computer algebra
		systems are essential for learning
		mathematics in high school.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
CONNECTIONS	MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Students can identify relevant quantities and apply what they know to solve problems related to real-world situations. Identify important quantities in real- world situations and create a pathway representing relationships applying appropriate tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas as well as electronic tools such as graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry. Students can confidently apply what they know, making assumptions and approximations to simplify complicated situations. Students can evaluate the reasonableness of their thinking and solution(s) and be willing to make revisions if necessary. Connect and apply the techniques from prior knowledge towards topics such as proportional relationships, rates, and percentages to real-world complex tasks.

STANDARD AREA	INDICATOR	INDICATOR INSIGHT
ANALYZE &	MPS.AJ.1 Use critical	Make sense of quantities and their
JUSTIFY	thinking skills to reason both abstractly and	application to relationships in mathematical and real-world
	quantitatively.	representations.
		Evaluate multiple sources of
		information from text, charts, tables,
		graphs, and other diverse media and formats.
		Students can write explanatory text that conveys their mathematical analyses and thinking.
		Apply concrete details, relevant facts, and coherent discussions of ideas to support thinking.
		Decontextualize by pulling information
		from a given situation, representing it
		symbolically, then manipulating the
		representing symbols as if they are their
		own entities, not necessarily relative to what the symbol stands for.
		Contextualize by pausing during the
		manipulation process to explore the
		meaning of symbols within the given
		situation.
STRUCTURE &	MPS.SP.1 Identify and	Examine, discern, and recognize
PATTERNS	apply regularity in	patterns or structures as complex
	repeated reasoning to	mathematical objects composed of
	make generalizations.	more than one simple object.
		Students can attend to detail and
		continually evaluate the reasonableness of their results.
		Students can transform more complex
		structures into something they know.
		Discern and recognize regularity in
		repeated reasoning.

Data, Probability, and Statistical Reasoning

DM.DPSR.1. Analyze, model, and solve problems involving fair outcomes.

Indicator	Indicator Insight
DM.DPSR.1.1 Investigate and describe the	Include approval and preference voting as
results of various election methods.	well as plurality, majority, run-off, sequential
	run-off, Borda count, and Condorcet winners.
DM.DPSR.1.2 Explain fairness and equity in	Possible paradoxes are the Arrow Paradox
relation to the paradoxes of voting.	and the Down Paradox.

Indicator	Indicator Insight
DM.DPSR.1.3 Solve apportionment problems	Variety of methods includes Hamilton, Hill,
using a variety of methods.	Jefferson, and Webster.
DM.DPSR.1.4 Compare voting methods to	Methods:
determine the method most appropriate for	• the Majority Criterion,
the situation.	• Condorcet's Criterion,
	• the Independence-of-Irrelevant-
	Alternatives Criterion, and
	• the Monotonicity Criterion.
DM.DPSR.1.5 Determine power indexes for	Apply to voting methods in 7c insight.
weighted voting systems.	

Measurement, Geometry, and Spatial Reasoning

DM.MGSR.1. Use graph theory to model relationships and solve problems.

Indicator	Indicator Insight
DM.MGSR.1.1 Distinguish between	Use this reasoning to set the stage for logic
inductive and deductive reasoning.	theory.
DM.MGSR.1.2 Determine statements and	Include connectives and quantifiers.
rephrase them symbolically.	
DM.MGSR.1.3 Use negation, disjunction,	Include Venn Diagrams and truth tables.
and conjunction to determine if statements are	
logically equivalent.	
DM.MGSR.1.4 Write statements in words	Include Venn Diagrams and truth tables.
and symbolically using <i>converse</i> , <i>inverse</i> , <i>and</i>	
contrapositive.	
DM.MGSR.1.5 Verify arguments and	Use Euler diagrams to verify syllogisms.
syllogism.	
DM.MGSR.1.6 Represent real-world	Real-world situations include directed and
situations using a vertex-edge graph.	undirected graphs. Examples could include
	but are not limited to a cake recipe, a social
	network, airline scheduling, and map
	directions.
DM.MGSR.1.7 Test graphs and digraphs for	Paths and circuits to explore should include
paths and circuits.	but are not limited to Euler paths, Euler
	circuits, Hamiltonian paths, and Hamiltonian
	circuits.

Numerical Reasoning

Indicator	Indicator Insight
DM.NR.1.1 Define basic terms and concepts in set theory.	Discussions should include the terms set element, well defined, empty/null set, and cardinal number.
DM.NR.1.2 Compare sets with appropriate language and notation.	Compare using equality, subset, proper subset, equivalence, and power sets.
DM.NR.1.3 Determine and explain the cardinality of sets.	Distinguish between finite and infinite cardinality of sets.

Indicator	Indicator Insight
DM.NR.2.1 Perform arithmetic operations	Define module, modulus, and integers.
using modular arithmetic properties.	
DM.NR.2.2 Solve problems involving	Real-world applications can include clocks,
modular arithmetic in real-world situations.	ISBNs, cryptosystems, coding, etc.
DM.NR.2.3 Explain and apply binary and	Make connections of number systems to
hexadecimal number systems.	computer applications such as machine
	language and coding of colors.

DM.NR.2. Analyze numbers with different bases in real-world situations.

DM.NR.3. Determine the number of ways an event can occur.

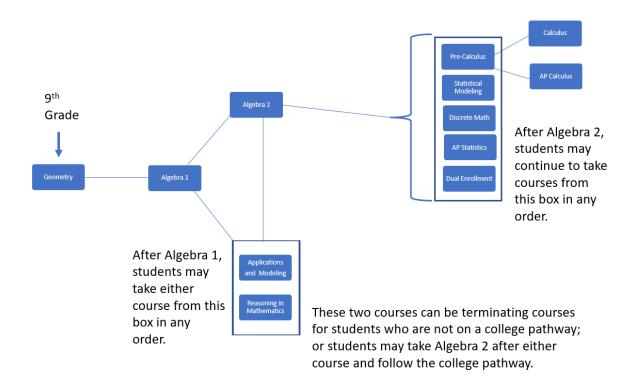
Indicator	Indicator Insight
DM.NR.3.1 Calculate combinations and	Consider applying combinations and
permutations.	permutations using set notation.

Patterns, Algebra, and Functional Reasoning

DM.PAFR.1. Classify and compare objects using estimation and sets for real-world situations.

Indicator	Indicator Insight
DM.PAFR.1.1 Use estimation to get an	Include distance, money, time, cost of gas,
approximate answer in real-world situations.	etc.
DM.PAFR.1.2 Perform operations on sets.	Operations include union, intersection,
	complement, and difference with and without
	Venn Diagrams.

DM.PAFR.2. Develop an understanding of and carry out proofs by mathematical induction using the Principle of Mathematical Induction.


Indicator	Indicator Insight
DM.PAFR.2.1 Create mathematical induction	Possible proofs include sum of integers,
proofs using the Principle of Mathematical	product of numbers, divisibility, and other
Induction.	properties of rational and irrational numbers.

DM.PAFR.3. Use matrices to model and solve mathematical and real-world situations.

Indicator	Indicator Insight
DM.PAFR.3.1 Manipulate matrices using	Consider limiting to three-by-three matrices.
addition, subtraction, multiplication, inverse,	
and power properties.	
DM.PAFR.3.2 Write and evaluate matrices	Possible situations to consider include
drawn from real-world situations.	encryption, economics, circuits, and systems
	of equations. Limit to 3x3 matrices and
	perform on a calculator or other technology.

Appendix A: High School Course Pathways Graphic

This section provides insight into the possible pathways for students. Four course credits are required for graduation.

Appendix B: Acknowledgements

Standards Writing Committee 2022-2023

The members of the writing committee considered recommendations by the review panel, the Education Oversite Committee, and the vertical alignment team to develop the draft of the revised standards.

Shemekia Adams, Sumter County School District Christie Allison, School District of Newberry County Ashley Anderson, Anderson School District Five Brittany Acquisto, Spartanburg School District 2 Kristina Ard, Richland School District Two Kayla Bakker, Kershaw County School District Nijjall Bigger, Rock Hill School District Three of York County Chenetra Brewington, York 2 (Clover School District) Tami Broomall, Spartanburg County School District 6 Sumesh Nair, Calhoun County Public Schools James Costner, Charleston County School District Christi Fricks, Anderson County School District 4 Bernard Frost, Spartanburg School District 7 Jason Hayes, Greenwood County School District 52 Hannah Heath, Anderson School District One Sharon Huff, School District of Pickens County Melinda Lee, Richland School District Two Valerie Muller, The School District of Greenville County Ann Elizabeth Owens, Darlington County School District Melanie Painter, Spartanburg School District Three Christie Reid, York 2 (Clover School District) Andrea Rexroad, Aiken County Public Schools John Ross, Aiken County Public Schools Kimberly Rothberg, Horry County Schools Ann Sanderson, Dorchester 2 School District Vanessa Senior, Colleton County School District Michael Small, Rock Hill School District Three of York County Miriam Watkins, Beaufort County School District Rhonda Willis, Hampton County School District Gabrielle Wriborg, South Carolina School for the Deaf and Blind Amanda Wylie, School District of Pickens County

Advisory Team 2022-2023

The advisory team provided support and recommendations to the 2022 writing committee.

Dr. Ed Dickey, Professor Emeritus at University of South Carolina, and Mathematics Consultant Dr. Karen Karp, Professor at Johns Hopkins University Dr. Kelly Pew, LEAD Consulting Dr. Douglas Reeves, Creative Leadership Solutions

SC CCR Math Standards First Read: September 2023

Office of Assessment and Standards Leadership Team and Education Associates

Staff within the Office of Assessment and Standards, Office of Early Learning and Literacy, and Office of Special Education Services worked alongside the review panel, writing committee, and vertical alignment team in support of the work.

Sandra Ammons, Office of Assessment and Standards Marquita Blaylock, Office of Assessment and Standards Wendy Burgess, Office of Early Learning and Literacy Daniel Cammisa, Office of Assessment and Standards Krysten Douglas, Office of Assessment and Standards Matthew Ferguson, Division of College- and Career-Readiness Dawn Hood, Office of Assessment and Standards Herk Huggins, Office of Early Learning and Literacy Dawn Jacobs, Office of Assessment and Standards Lynn Kuykendall, Office of Early Learning and Literacy Dr. David Mathis, Division of College- and Career-Readiness Deann McManus, Office of Assessment and Standards Dr. Christina Melton, Office of Assessment and Standards Elizabeth Moore, Office of Special Education Services Kayce Prince-Harvey, Office of Assessment and Standards Llewellyn Shealy, Office of Assessment and Standards Josie Stratton, Office of Assessment and Standards Janelle Wilson, Office of Assessment and Standards

References

- A framework to evaluate cognitive complexity in mathematics assessments. Achieve. (2019, November 25). https://www.achieve.org/cognitive-complexity-mathematics
- Barton, M., & Spearman, M. (2016). *Procedures for the cyclical review of current South Carolina K–12 academic standards and for the development of new academic standards.* South Carolina Department of Education and Education Oversight Committee.
- Leinwand, S., & Milou, E. (2021). *Invigorating high school math: Practical guidance for longoverdue transformation*. Heinemann.
- *Mathematics standards*. ACT. (n.d.). <u>https://www.act.org/content/act/en/college-and-career-readiness/standards/mathematics-standards.html</u>
- PISA 2021 Mathematics (second draft). The Organization for Economic Cooperation and Development. (2018, November). <u>https://www.oecd.org/pisa/sitedocument/PISA-2021-mathematics-framework.pdf</u>
- *Pre-K–12 Guidelines for assessment and instruction*. American Statistical Association. (2020). <u>https://www.amstat.org/asa/files/pdfs/GAISE/GAISE/IPreK-12</u> Full.pdf
- South Carolina Educational Accountability Act of 1998, S.C. Code Ann. § 59-18-110. (1998).
- The National Council of Teachers of Mathematics, Inc. (2018). *Catalyzing change in high school mathematics initiating critical conversations*.
- *The nation's report card: Mathematics 2005.* National Center for Education Statistics. (2005, October). <u>https://nces.ed.gov/nationsreportcard/pdf/main2005/2006453.pdf</u>

State Standards:

- Alabama State Department of Education. (n.d.). *Academic standards*. Alabama State Department of Education. <u>https://www.alabamaachieves.org/academic-standards/</u>
- Colorado Department of Education. (n.d.). *Mathematics academic standards*. CDE. <u>https://www.cde.state.co.us/comath/statestandards</u>
- Florida Department of Education. (n.d.). *B.E.S.T. standards for Mathematics*. Mathematics & Science. <u>https://www.fldoe.org/academics/standards/subject-areas/math-science/mathematics/</u>
- Georgia Department of Education. (n.d.). *Math.* Georgia's K-12 Mathematics Standards. <u>https://www.georgiastandards.org/Georgia-Standards/Pages/Math.aspx</u>
- Nebraska Department of Education. (n.d.). *Mathematics education*. Mathematics Education Nebraska Department of Education. <u>https://www.education.ne.gov/math/</u>
- Oklahoma State Department of Education. (n.d.). *Oklahoma academic standards*. Oklahoma State Department of Education. <u>https://sde.ok.gov/oklahoma-academic-standards</u>
- Wisconsin Department of Public Instruction. (n.d.). *Wisconsin standards for Mathematics*. Mathematics in Wisconsin. <u>https://dpi.wi.gov/math/standards</u>
- Wyoming Department of Education. (n.d.). *Mathematics*. Wyoming Department of Education. <u>https://edu.wyoming.gov/for-district-leadership/standards/mathematics/</u>